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3.1 Introduction

Random variables are at the core of Probability and Modern Mathematics and have nothing to
do with randomness: they are merely functions, labels of outcomes of an “abstract space” Ω.
These functions must be compatible with the set of events of Ω. This compatibility property is
called measurability. The concept of a random variable is purely functional.

David Mumford [4] challenges the mathematical community by insisting that we are encoun-
tering a paradigm shift in Mathematics, namely, we are seeing how “Stochasticity” plays a
much more fundamental role within Mathematics than previously envisioned. Moreover, Mum-
ford claims that random variables should be put first in the discipline of Probability. Somehow,
he suggests a change of the neo-classical Kolmogorov foundation, and wants to replace it by
functions, i.e. random variables, as primary objects. There is no doubt that this can be done,
just as Topology can be approached, not with sets, but with functions to start with. While we
will not be as “radical” as Mumford, we will explain the importance of random variables by
explicitly discussing all (classical) nuances associated with them.

So we first start with functional concepts, ignoring probability. We then put a probability
and see how it is transformed by a random variable: a random variable transforms a probability
into another probability that is known as its law.

Discrete random variables are trivial, from a foundational point of view (but far from trivial
otherwise). Continuous random variables are hard to visualise. We prefer to construct such
random variables. by flipping coins which is the most natural thing to do in Probability (arguably
the only thing to do).

The distribution of a random variable is any function that uniquely specifies its law. It is a
convention, for real random variables, to use the so-called distribution function as a distribution.
Some distribution functions are nice in the sense that they can be differentiated and their
derivatives are useful because they can be integrated to enable us to compute probabilities.
These derivatives are called densities. We try to be semi-honest when discussing them.

The expectation of a random variable is discussed, constructed, and shown to be compatible
with the usual näıve formulae.

Some sine qua non inequalities (under the names of Markov, Chebyshev, Chernoff, Jensen,
Cauchy, Bunyakowskii, Schwarz, Hölder and Minkowski) are presented, because inequalities are
more useful than equalities.

Finally, there is a brief discussion of he concept of a moment generating function.

Exercises are scattered within the text.

Appendix A summarises basic notions regarding sets. Appendix B is gives a somewhat
elementary approach to putting probabilities on sets.

3.2 Random variables are functions

A measurable space is a set together with a σ-field of subsets of it. The concept of a random
variable was introduced in 1.1.5 . Intuitively, a random variable assigns concrete labels to
abstract outcomes. Concretely,

A random variable is a measurable function X between two measurable
spaces, an “abstract” one, (Ω,F ), and a “concrete”a one, (S,S ).

aThe adjectives in quotes have nothing to do with Mathematics but, rather, with our human interpretation of
it.



SMST C: Probability 3–3

In other words, we require that the inverse image by X of each element of S be an element of
F . We denote this situation by

X : (Ω,F ) → (S,S ).

Many a times (Ω,F ) could (or should) be left unspecified but (S,S ) should be chosen specifi-
cally; for example it could be (R,B), where B = B(R) is the class of Borel sets (see 1.1.3 ) on
R. In such a case we call X ONE (real) random variable, omitting the numeral ONE when
not necessary. As another example, let (S,S ) = (R2,B(R2)), where B(R2) are the Borel sets
on R2 (defined as the smallest σ-field containing all open sets in R2). In this case we refer to
X as TWO (real) random variables, because we may, by choosing Cartesian coördinates
on R2, represent X by (X1, X2), where X1 is one random variable and X2 is also one random
variable. More generally, we may let (S,S ) = (Rd,B(Rd)), and then we refer to X a random
(d-dimensional real) vector.

Terminology: we say that X is a random variables IN S or that X is a random element OF
S. If S is a concrete space with a name “abc” then we call X a random “abc”. For instance, if
S is the space of triangles on the plane, then a random variable in X is called random triangle.

EXERCISE 1. Show that if X : (Ω,F ) → (S,S ), H : (S,S ) → (T,T ) are random variables
then H◦X is a random variable.

The following lemma, useful in checking that a function is a random variable:

Lemma 3.1. If X : Ω → S is a function, F a σ-field on Ω and S a σ-field on S generated by
the collection of sets C then X is a random variable if and only if X−1(B) ∈ F for all B ∈ C .

Proof Let S ′ := {B ⊂ S : X−1(B) ∈ F}. This is a σ-field. Indeed, if B ∈ S ′ then
X−1(Bc) = X−1(B)c ∈ F because X−1(B) ∈ F . If B1, B2, . . . ∈ S ′ then X−1(∩jBj) =
∩jX−1(Bj) ∈ F because each X−1(Bj) ∈ F . Suppose that X−1(B) ∈ F for all B ∈ C . This
means that C is contained in S ′. But then S which is the smallest σ-field containing C must
be contained in S ′ for the latter is a σ-field. In symbols, S ⊂ S ′. But, by definition of S ′,
this means that X−1(B) ∈ F for any B ∈ S . �

Recall that the notation
{X ∈ B} = X−1(B)

is used all the time, so we will stick to it when we can.

Corollary 3.1. If X : Ω → R is a function and F a σ-field on Ω, then X is one random variable
⇐⇒ {X ≤ x} ∈ F for all x ∈ R ⇐⇒ {X < x} ∈ F for all x ∈ R ⇐⇒ {X > x} ∈ F for all
x ∈ R.

The real fun starts when (S,S ) is chosen to be a large (but concrete) space, for example,
S can be a subset of a space of real-valued functions on the real line and S a suitable σ-field.
In such a case, X is called random function or stochastic process (stochastic being a
synonym of random and process being a synonym of function; therefore, random process or
stochastic function are also acceptable terminologies for the same thing).

3.3 Continuous functions of random variables

Lemma 3.2. If X is a random vector in Rd and f : Rd → Rk is a continuous function then
f◦X is a random vector in Rk.
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Proof Let B be an open subset of Rk. Then f−1(B) is an open subset of Rd because f is
continuous. Hence f−1(B) is a Borel subset of Rd and so f is measurable. Now use Exercise 1.
�

An application of this is that all usual algebraic operations on random variables will result
random variables. So

X1 +X2, X1 ·X2, X1 ∧X2

are all random variables.

A more important result is that we can go beyond algebraic operations and retain measura-
bility. So

Lemma 3.3. If X1, X2, . . . are random variables in R then

inf
j
Xj , lim

j
Xj , sup

j
Xj, lim

j
Xj

are random variables in R ∪ {+∞,−∞}.

Proof Indeed,
{inf
j
Xj ≤ a} = ∩j{Xj ≤ a}

and, since {Xj ≤ a} ∈ F for all j, and F is a σ-field, then the intersection also belongs to
F . For the second variable, we simply observe that supjXj = − infj(−Xj) is also a random
variable and so limj Xj = supj infk≥jXk is also a random variable. �

3.4 Induced σ-fields; measurability

Recall, as in 1.1.3 , that

the σ-field generated by a collection, say A of subsets of Ω, is defined as the inter-
section of all σ-fields containing A ; it is denoted by σ(A ).

If X : Ω → S is a function, and if S is a fixed σ-field on S, the σ-field generated or induced
by X is defined by

σ(X) := {X−1(B), B ∈ S }.
It is easy to see that

Lemma 3.4. (i) σ(X) is a σ-field, (ii) σ(X) is the intersection of all σ-fields G ⊂ F such that
X : (Ω,G ) → (S,S ) is a random variable, (iii) X is a random variable if and only if σ(X) ⊂ F .

If Y : Ω 7→ S′ is another function, and if S ′ is endowed with another fixed σ-field S ′, then
the notation σ(X,Y ) stands for the smallest σ-field containing σ(X) = {X−1(B), B ∈ S } and
σ(Y ) = {X−1(B), B ∈ S ′}:

σ(X,Y ) := σ(σ(X) ∪ σ(Y )) =: σ(X) ∨ σ(Y ).

(The last bit is just another notation for the same thing.) Let us study random variables that
take values in Rd or, more generally, in a product S1 × · · · × Sd of sets. Suppose that on each
Si we have a σ-field Si ⊂ 2Si . We first construct a natural σ-field on S1 × · · · × Sd. For each i
consider the projection function

πi : S1 × · · · × Sd → Si; πi : (s1, · · · , sd) 7→ si.

Define
S1 ⊗ · · · ⊗ Sd := σ(π1, . . . , πd).



SMST C: Probability 3–5

EXERCISE 2. Consider (Si,Si), i = 1, . . . , d. Let d = 2 for simplicity. Show that

S1 ⊗ S2 = σ({B1 × S2 : B1 ∈ S1} ∪ {S1 ×B2 : B2 ∈ S2}).
= σ({B1 ×B2 : B1 ∈ S1, B2 ∈ S2}).

Lemma 3.5. Let Xi : (Ω,F ) → (Si,Si), i = 1, 2, . . . , d, be random variables. Let S =
S1 × · · · × Sd, S = S1 ⊗ · · · ⊗Sd. Then (X1, . . . , Xd) : (Ω,F ) → (S,S ) is a random variable.

Proof We just have to check that (X1, . . . , Xd)
−1(B) ∈ F for B ranging in a suitable

π-system. We take this π-system (and it is immediate to see that it is so) to be all sets of the
form B1 × · · · × Bd, where Bj ∈ Sj for all 1 ≤ j ≤ d. Then (X1, . . . , Xd)

−1(B1 × · · · × Bd) =
{(X1, . . . , Xd) ∈ B1 × · · · ×Bd} = {X1 ∈ B1} ∩ · · · ∩ {Xd ∈ Bd} ∈ F . �

Moreover, and more importantly for all the theory of stochastic processes, we can carry
this to infinity. Let (Si,Si), i = 1, 2, . . ., be measurable spaces. We wish to consider the
space S = ×∞

i=1Si and endow it with a natural σ-field S . To do so, consider sets of the form
B1 × B2 × · · · b where Bi ∈ Si for all i, and where Bj = Sj for all but finitely many indices j.
Define S =

⊗∞
i=1 Si to be the smallest σ field containing all these sets.

Lemma 3.6. Suppose that for each i ∈ N, Xi : (Ω,F ) → (Si,Si) is a random variable. Let
S = ×∞

i=1Si and let X = (X1, X2, . . .) : (Ω,F ) → (S,S ), where S =
⊗∞

i=1 Si is the product-
sigma field. Then X is a random variable.

Proof Consider the π-system consisting of sets of the form ∩∞
i=1Bi where Bi ∈ Si for all i,

and where Bi = Si for all but finitely many indices i. �

Now consider the set R2. The natural σ-field on it if B ⊗ B, usually denoted by B(R2).
Similarly for Rd.

We should view σ(X) as the essential information contained in X. We explain: If Ω is a
set and X : Ω → S a function then just by looking at the values of X we may not be able to
distinguish elements of Ω, simply because X may take the same value on different points of Ω. In
other words, unless X is one-to-one, the set X(Ω) = {X(ω), ω ∈ Ω} contains “less information”
than Ω. Take a trivial example: Let Ω = {−N,−N + 1, . . . , N − 1, N}, and let X(i) = i3 for all
i ∈ Ω. Then X(Ω) contains precisely the same information as Ω. But if Y (i) = i2 then Y (Ω)
is less informative than Ω because the sign is lost. In some sense, we are not interested in the
exact values of a random variable but only on whether the values can distinguish elements of Ω.

Take an abstract set Ω (for example think of Ω as a square in the 2-dimensional Euclidean
plane), let A ⊂ Ω and consider the random variable 1A. This takes only two values, 0 and 1, so
the information conveyed by it is not that large. Indeed,

σ(1A) = {∅, A,Ac,Ω}

We may represent σ(1A) as a partition of Ω, the partition consisting of A and its complement.
Thus, 1A can only tell us whether we are on A or on its complement: very little information
indeed. But we may as well use any function of 1A that does not compress it further, for
example, c · 1A, where c is a nonzero constant.

EXERCISE 3. Consider two subsets A1, A2 of Ω and prove that the σ-field generated by
c11A1

+ c21A2
is

σ(c11A1
+ c21A2

) = {∅, Ω, A1, A2, A
c
1, A

c
2, A1A2, A1A

c
2, A

c
1A2, A

c
1A

c
2,

A1 ∪A2, A1 ∪Ac2, Ac1 ∪A2, A
c
1 ∪Ac2, A14A2, (A14A2)

c}.
bEach such set is called ‘finite-dimensional rectangle’.
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It is more convenient to represent this σ-field by the partition of Ω induced by A1, A2, i.e. by
the collection of disjoint sets

{A1A2, A1 \ A2, A2 \A1, (A1A2)
c}.

EXERCISE 4. Any nonempty set in Exercise 3 can be obtained as union of elements of this
partition.

EXERCISE 5. Given a partition C = {C1, . . . , Cn} of Ω show that the σ-field generated by
C consists of the empty set and all sets that can be obtained by taking unions of sets in C .
Assuming that none of the Ci is empty, this C contains exactly 2n sets. Also show that any
random variable that takes value bi on Ci for each i generates a σ-field which is contained in
σ(C ). Show that if the values bi are distinct then σ(X) = σ(C ).

Unfortunately, this partition point of view does not carry over to big spaces. It works well for
finite Ω or for general Ω but small σ-fields, but fails in richer situations. However, the intuition
obtained remains, in some sense, valid. Let us explore this further.

If X,Y are random variables on a common measurable space (Ω,F ) (and values in arbitrary
sets) we say that Y is measurable with respect to X if

σ(Y ) ⊂ σ(X).

We often write this as
Y ∈ σ(X).

For example, if X is one random variable then X2 is measurable with respect to X (but not
vice-versa); if (X1, X2, X3) are three random variables then (X1, X2) is measurable with respect
to (X1, X2, X3) and so is (cos(X1 +X2),−X3 + log |X1|). If it appears that

“measurability with respect to” means “(suitable) function of”

then this is because it really is so:

Lemma 3.7. If X : (Ω,F ) → (S,S ), Y : (Ω,F ) → (R,B) are random variables, and if
Y ∈ σ(X), then there exists a random variable (measurable map) H : (S,S ) → (R,B) such
that Y = H◦X.

(The proof is deferred until the next page or so.) To understand why let us consider first
a trivial situation: suppose that X takes only finitely many values; let x1, . . . , xn be these
(distinct) values.

EXERCISE 6. Show that if X(Ω) = {x1, . . . , xn} is a finite set then σ(X) is generated by the
partition

{
{X = xi}, i = 1, . . . , n

}
of Ω.

EXERCISE 7. Using Exercise 5 show that any Y , measurable with respect to X, must be of
the form

Y =

n∑

i=1

ci1(X = xi).

We then see that what is claimed in Lemma 3.7 is correct, in this special situation with X
being finitely-valued. Indeed, let H(x) =

∑n
i=1 ci1(x = xi) and, obviously, Y = H◦X.

The general case requires an approximation result that says that any measurable random
variable X : (Ω,F ) → (R,B) can be approximated by simple random variables. A simple
random variable is a random variable with finitely many values.
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Lemma 3.8. Let X : (Ω,F ) → (R,B). Then there exists a sequence X1, X2, . . . of simple
random variables such that limn→∞Xn(ω) = X(ω). If X(ω) ≥ 0, ω ∈ Ω, we can choose the
sequence so that 0 ≤ Xn(ω) ≤ Xn+1(ω) for each n and ω.

Proof First suppose X(ω) ≥ 0 for all ω ∈ Ω. Let dxe denote the smallest integer k such
that k ≥ x. Define

τn(x) := 2−nd2nxe ∧ n. (3.1)

Xn(ω) := τn(X(ω)). (3.2)

That Xn(ω) → X(ω) as n → ∞ is obvious. Since dae ≤ a we have 2dae ≤ d2ae and so
2d2nXe ≤ d2n+1Xe. Dividing both sides with 2n+1 we have 2−nd2nXe ≤ 2−n−1d2n+1Xe and so
Xn ≤ Xn+1. Next do not place any requirement on the sign of X but observe that

X = X+ −X−.

Then reduce to the previous case. �

Proof of Lemma 3.7 Suppose first that Y = 1A for some A ∈ F and that Y ∈ σ(X). This
means that A ∈ σ(X). By definition of σ(X), there is a B ∈ B such that A = X−1(B). Define
H(x) = 1(x ∈ B), x ∈ R. Then H(X(ω)) = 1(X(ω) ∈ B) = 1(ω ∈ X−1(B)) = 1(ω ∈ A) =
Y (ω) and so H◦X = Y , as required. Suppose next that Y is a simple random variable. Thus
Y =

∑k
i=1 ci1Ai

where Ai ∈ F . By the previous case, there are Hi : (S,S ) → (R,B), such that

1Ai
= Hi(X). Define H(x) =

∑k
i=1 ciHi(x). Then, clearly, H(X) = Y . Finally, suppose that

Y : (Ω,F ) → (R,B) is a positive random variable. Then, by lemma 3.8, we can find simple
Yn : (Ω,F ) → (R,B), for all n ∈ N, such that Y = supn Yn. By the case analysed above, we
have, for each n, a measurable function Hn such that Yn = Hn◦X. Define H = supnHn. By
Lemma 3.3, H is measurable. Also, H◦X = (supnHn)◦X = supn(Hn◦X) = supn Yn = Y , as
required. In the general case, write Y = Y + − Y − and reduce to the above one. �

EXERCISE 8. Let X be one random variable in R. Show that σ(X 2) is a strict subset of
σ(X). But show that σ(2X) = σ(X).

Remark Lemma 3.7 is very important in enhancing our understanding of measurability. Mea-
surability, in Probability Theory (as well as in other areas of Mathematics like Descriptive Set
Theory) is not an abstract notion but conveys precisely the idea of “information” contained in
a measurement. It should also be stressed that Y in Lemma 3.7 does not have to be restricted
to take values in R. It could very well be a random vector (values in Rd) or, more generally, a
random element of a fairly arbitrary space known as Polish space. We shall not enter into such
advanced details here.

3.5 Law of a random variable

The reader will of course have noticed that

the concept of “random variable” has nothing to do with randomness.

The adjective “random” is attached because, in addition to the above, we also consider some
probability (measure) P on (Ω,F ) . As a mathematical definition, the concept of random vari-
able is purely functional. So let us do that: let P be a probability on (Ω,F ). The distribution
or law of the random variable X is a probability PX on (S,S ) which is induced, in the most
natural fashion, by X:

PX(B) = P(X−1(B)), B ∈ S .

Note that PX depends on two functions: the function P and the function X.
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EXERCISE 9. Show that if (Ω,F ,P) is a probability space and X : (Ω,F ) → (S,S ) a
random variable then (S,S ,PX) is a probability space. Hence if X is a random vector then X1

is a random variable.

EXERCISE 10. With the notation of Exercise 1, show that the law of H ◦X as a random
variable on the probability space (Ω,F ,P) is the same as the law of H as a random variable on
(S,S ,PX ).

So the role of a random variable is to transform an abstract probability space into a concrete
one.

In practise, one is often givenc a probability measure Q on some (S,S ) and one may (or may
not) want to construct a probability space (Ω,F ,P) and a random variableX : (Ω,F ) → (S,S )
such that PX = P. In the absence of any further requirement we follow Occam’s razor and
consider the so-called canonical construction: take Ω = S, F = S , P = Q and let
X(ω) ≡ ω. Then, obviously, PX = Q. If this appears to be silly then this is because it is. But
silly things are often quite useful. On the other hand, if other requirements are needed to be
satisfied, choosing the “right” probability space and the “right” random variable is an art. The
freedom in the choice of probability space can be roughly compared to the freedom of choice of
an appropriate coördinate system in R3 when dealing, e.g. with the solution of a certain physical
problem expressed in terms of a partial differential equation. For example, when we study the
motion of fluid in a cylinder we may want to choose cylindrical coördinates.

3.6 Law of a discrete random variable

A discrete random variableX : (Ω,F ) → (S,S ) is, by definition, one that takes countably
many values. In other words, if P is a probability on (Ω,F ) then X is discrete if and only if
there is a countable set D ∈ S such that P(X ∈ D) = 1. We also assume that D and all
its subsets are members of S . Hence the law PX of X is a probability on D. We know that
a probability on a countable set D can be defined by defining its values on singletons. These
values form the so-called (in baby probability talk) probability mass function (see 1.1.5 )
Thus, the probability mass function is

p(x) = PX{x} = P(X = x), x ∈ D.

Clearly, if B ⊂ D then

PX(B) = PX

( ⋃

x∈B
{x}
)

=
∑

x∈B
p(x).

So p is sufficient for computing PX .

Example 3.1. A box contains n socks labelled 1 through n. Pick two socks at random and let
X be the pair of their labels. Then X is a discrete random variable taking values (i, j) where
1 ≤ i, j ≤ n, i 6= j. The probability mass function is

p(i, j) = 1/n(n− 1).

But what is the probability space? First, we should realise that we do not necessarily need to
consider it. Second, we should realise that the article “the” is wrong, for there are many choices
for a probability space. Having said that, a reasonable choice for Ω is the set of permutations

cActually, one is seldom given anything. Either one derives something from some basic principles/requirements
or one performs an experiment whereby measurements are collected and a probability measure is stipulated. The
latter is the subject of Statistics
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ω of {1, . . . , n}, i.e. ω = (ω1, . . . , ωn) where all the ωi take values in {1, . . . , n} and are distinct.
The σ-field F should be rich enough to contain all singletons, i.e. F = 2Ω. The probability
P should be defined as P({ω}) = 1/n! for all ω. To be honest we should check that p(i, j) =
P{ω ∈ Ω : ω1 = i, ω2 = j}. We have

P{ω ∈ Ω : ω1 = i, ω2 = j} =
1

n!
]{ω ∈ Ω : ω1 = i, ω2 = j} =

(n− 1)!

n!
=

1

n(n− 1)
,

as required. So (Ω,F ,P) is a probability space, X is a random variable (check this!), PX is its
law, and p is its probability mass function.

Example 3.2. Consider the experiment of picking k integers at random (with replacement)
from the set {1, . . . , n}. Our (Ω,F ) here can be taken to be

Ω = {1, . . . , n}k, F = 2Ω,

and the probability corresponding to the experiment should be defined as

P{(ω1, . . . , ωk)} =
1

nk
.

Note here that {(ω1, . . . , ωk)} is a set containing a single point, namely the ordered k-tuple
ω = (ω1, . . . , ωk). For more general sets B we take, as required, P(B) =

∑
ω∈B P{ω} = ]B

nk .
Define a random variable representing the maximum number picked:

X(ω) = max(ω1, . . . , ωk).

Clearly, X takes values in {1, . . . , n} and trivially, X is a measurable function from (Ω,F )
to ({1, . . . , n}, 2{1,...,n}). (The inverse image of a subset of {1, . . . , n} under X is, of course, a
subset of Ω, i.e. an element of F .) Let us compute the probability mass function for X. For
x ∈ {1, . . . , n} we have

p(x) = P(X−1(x)) = P(X = x) = P{ω ∈ Ω : max(ω1, . . . , ωk) = x}
= P{ω ∈ Ω : max(ω1, . . . , ωk) ≤ x but max(ω1, . . . , ωk) 6≤ x− 1}
= P{ω ∈ Ω : max(ω1, . . . , ωk) ≤ x} −P{ω ∈ Ω : max(ω1, . . . , ωk) ≤ x− 1}

=
1

nk
]{ω ∈ Ω : ω1 ≤ x, . . . , ωk ≤ x} − 1

nk
]{ω ∈ Ω : ω1 ≤ x− 1, . . . , ωk ≤ x− 1}

=
xk − (x− 1)k

nk
.

EXERCISE 11. Suppose that the random variable X takes n distinct values (i.e. X(Ω) is
a set with n elements). Show that σ(X) has 22n

elements and describe (give a procedure for
describing) them.

3.7 Tossing coins

Consider the experiment of flipping fair coins independently (see 2.2 ). A coin takes 2 values,
heads or tails with probability 1/2 each. Label heads by 1 and tails by 0. Let ω1 be outcome of
the first toss, ω2 that of the second, etc. We stipulate that:

A coin flipped n times yields a string (ω1, . . . , ωn) of n 0s or 1s with probability 1/2n each.
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For example (0, 1, 0) should have probability 1/8, while (1, 1, 0, 0, 1) should have probability
1/32. In other words, we are trying to define a probability P by saying that the P of an event
that specifies the first n outcomes completely should be 1/2n, for each n ∈ N. Consider our
desire to find out when we will get our first 1 (head), i.e. let

T = inf{n ∈ N : ωn = 1}.

This appears to be a random variable. But on which measurable space? We cannot pick Ω to
be {0, 1}n for some finite n, because we have no bound on T . We can, however, pick

Ω = {0, 1}N,

i.e. the set of all infinite-length sequences ω = (ω1, ω2, . . .), where ωn = 0 or 1 for all n. This is
our coin-flip space.

EXERCISE 12. Show that the coin-flip space {0, 1}N is uncountable.

To put what we said in some notation, let

R(i1, . . . , in) := {ω ∈ Ω : ω1 = i1, . . . , ωn = in}.

To this set we should assign probability 2−n:

prob(R(i1, . . . , in)) = 2−n. (3.3)

We use the symbol prob rather than P because we have not yet verified that this is a probability.
Let R be the class of such sets (together with the empty set):

R := {∅} ∪ {R(i1, . . . , in) : i1, . . . , in ∈ {0, 1}, n ∈ N}.

Formula (3.3) defines the function
prob : R → R.

It is by no means true that R contains all subsets of Ω (far from that):

EXERCISE 13. Show that

R(1) ∪R(0, 1) ∪R(0, 0, 1) ∪ · · · 6∈ R.

Show that this set is the set {ω ∈ Ω : T (ω) <∞}. Show that the intersection of two elements
of R is in R, but not the union.

EXERCISE 14. Second, the complement of any set in R is written as a finite disjoint union
of sets in R. (For example R(0, 1)c = {ω : ω1 = 1} ∪ {ω : ω2 = 0} = R(1) ∪ {ω : ω2 = 0} =
R(1) ∪R(1, 0) ∪R(0, 0).)

What kind of properties does prob have? We would like prob to be, at least, additive, i.e.
to satisfy prob(G1 ∪ · · · ∪Gk) = prob(G1) + · · · + prob(Gk) if G1, . . . Gk are mutually disjoint
elements of R. There is an issue here: as we saw, the union of elements of R may not be in
R. So this last additivity property is completely meaningless for prob. We remedy this by
enlarging R:

C := {G1 ∪ · · · ∪Gk : G1, . . . , Gk are mutually disjoint elements of R, k ∈ N},

and by extending prob to C in the most natural way:

P0(G1 ∪ · · · ∪Gk) :=
k∑

j=1

prob(Gj).
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Lemma 3.9. (i) C is a field. (ii) P0 is well-defined and additive over C .

Proof (i) Let A,B ∈ C . Then A = ∪ni=1Gi, B = ∪mj=1Hj, where the Gi are mutually
disjoint (m.d.) elements of C , and so are the Hj. We have

AB = ∪i,jGiHj

and, clearly, the GiHj are m.d. elements of R; so AB ∈ C . Also,

Ac = ∩jGci ,

each Gci is an element of C (Exercise 14), and because we just proved that C is closed under
intersections, we have Ac ∈ C . So C is a field.
(ii) To show that P0 is well-defined means to show that if we can write the same A ∈ C

in two different ways, say A = ∪ni=1Gi = ∪mj=1Hj where both the Gi and the Hj are m.d.
elements of R, we have

∑
i prob(Gi) =

∑
j prob(Hj). But notice that Gi = ∪jGiHj and so

prob(Gi) =
∑

j prob(GiHj), and, similarly, prob(Hj) =
∑

i prob(GiHj). This proves the
claim that P0 is well-defined on C . Now, to show additivity, suppose that A1, . . . , An are m.d.
elements of C . We must show that P0(∪i) =

∑
iP0(Ai). Now, to show additivity, suppose

that A1, . . . , An are m.d. elements of C . We must show that P0(∪iAi) =
∑

iP0(Ai). But each
Ai is itself a finite union of m.d. elements of R, say Ai = ∪jHij, and, by the definition of P0,
we have P0(Ai) =

∑
j prob(Hij). So

∑
iP0(Ai) =

∑
i

∑
j prob(Hij). On the other hand,

∪iAi = ∪i,jHij and the Hij are m.d. elements of R. Hence, by the definition of P0 again, we
have P0(∪iAi) =

∑
i

∑
j prob(Hij). �

To put in words, what we have shown so far is that, starting merely from the intuitive
definition (3.3), we can compute probabilities of sets that can be expressed using finitely many
outcomes, i.e. that involve ωi up to some finite index. Mathematically, Lemma 3.9 has enabled
us to define a function

P0 : C → R

in such a way that
P0(G) = prob(G), if G ∈ R

and

P0(G1 ∪ · · · ∪Gk) = P0(G1) + · · · + P0(Gk), if G1, . . . Gk are mutually disjoint elements of R

(a property which, as remarked, is meaningless for prob).

But there are many sets, whose probability we would like to know, but which do not belong
to C .

Example 3.3. The following (useful) sets do not belong to C :
(i) A1 := {ω : T (ω) < ∞} (i.e. the event that a head will occur at some point). Indeed, this
equals ∪∞

n=1{ω ∈ Ω : ωn = 1} and does not belong to C because it involves infinitely many
coordinates.
(ii) A2 := {ω : ωn = 1 for infinitely many n}. This, obviously, does not belong to C . Formally
the set equals

{ω : ∀n ∃m ≥ n ωm = 1} =
⋂

n

⋃

m≥n
{ω : ωm = 1} =

⋂

n

⋃

m≥n

⋃

i1,...,im∈{0,1}
R(i1, . . . , im−1, 1).

And so it is explicitly seen that we need infinitely many sets from R to construct A2.
Although we feel that both A1 and A2 should be assigned probability 1, we cannot write
P0(A1) = 1, neither P0(A2) = 1, simply because neither of the two sets belongs to the do-
main of the function P0.



SMST C: Probability 3–12

So our desire to deal with these sets (and not only!) forces us to carry the story further.

We saw (Lemma 3.9 that P0 is additive on C . But more is true:

Lemma 3.10. P0 is countably additive over C , that is, if Gn are mutually disjoint elements of
C and if ∪nGn ∈ C then P0(∪nGn) =

∑
nP0(Gn).

Proof By Lemma [CA], Appendix B, it suffices to show that if Gn is a decreasing sequence
of elements of C such that ∩nGn = ∅ then P0(Gn) → 0. – To be continued – �

We next consider the class D(C ) of sets that are limits of sequences of sets in C . Lemma
[FIRST EXTENSION], Appendix B, shows that we can define P1 on D(C ) such that P1 is
countably additive and agrees with P0 on C .

We then consider the class D2(C ) = D(D(C )) of sets that are limits of sequences of sets in
D(C ). Just as above, we can define P2 on D2(C ) such that P2 is countably additive and agrees
with P1 on D(C ).

One would suspect that by continuing, in this manner, by induction, i.e. by taking sets which
are limits of limits of limits, ad infinitum, we would exhaust the class

F = σ-field generated by C . (3.4)

(It is not difficult to see that, also,

F = σ-field generated by R.) (3.5)

Unfortunately, this does not work. The way out is to do as in Proposition [SANDWICH], Ap-
pendix B. This proposition actually proves the following:

Theorem 3.1. Let Ω = {0, 1}N. Let R be the class of sets of the form R(i1, . . . , in) := {ω ∈
Ω : ω1 = i1, . . . , ωn = in}. Define prob(R(i1, . . . , in)) = 2−n. Let F be the σ-field generated by
R. Then there exists a UNIQUE probability P on (Ω,F ) such that P(G) = prob(G) for every
G ∈ R.

Proof See proof of Proposition [SANDWICH], Appendix B. To prove uniqueness, assume
that there is another probability P̃ on (Ω,F ) that agrees with prob on R. Then P̃ agrees with
prob (and hence with P on C . Let us define the class common domain of P, P̃:

D := {A ∈ 2Ω : P(A) = P̃(A)}.

We have
C ⊂ D .

Therefore, of λ(C ) (resp. λ(D)) is the smallest λ-system containing C (resp. D) we have

λ(C ) ⊂ λ(D).

But it is easy to see that D is itself closed under proper differences and increasing limits.
Therefore λ(D) = D . On the other hand, by Lemma [Sierpiński-Dynkin], Appendix B, we have
λ(C ) = σ(C ). So F := σ(C ) is contained in D . In other words, the two probabilities agree on
F . �

This theorem tells us that

({0, 1}N,F ,P) is a probability space.
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So we can use all the good things we know about a probability space. For example, T (ω) =
inf{n ∈ N : ωn = 1} defines a measurable function T : (Ω,F ) → (R,B) and, since {T ≤ n} are
increasing sets with union equal to the set {T < ∞}, we have P(T <∞) = limn→∞ P(T ≤ n).
But {T > n} = R(0, . . . , 0) (n 0’s inside the parenthesis) and so P(T > n) = prob(R(0, . . . , 0)) =
2−n. Thus P(T <∞) = limn(1 − 2−n) = 1.

EXERCISE 15. Consider the space Ω = {0, 1}N and the class of sets R defined in the tossing
coins section. (i) Show that R is a countable set, i.e. there is a one-to-one correspondence
between R and N. (ii) Show that C is the field generated by R and is also countable. (iii)
Consider F , the σ-field generated by R (and also by C ) and show that it is uncountable; more
specifically, show that there is a one-to-one correspondence between F and 2N. (iv) Consider
the class 2Ω of all subsets of Ω and show that there is a one-to-one correspondence between 2Ω

and 22N

(the class of subsets of the set of subsets of N.) It is known [3] that the cardinality of the
set of subsets of a set is strictly larger than the cardinality of the set itself (Schroeder-Bernstein
theorem). Using this, conclude that there 2Ω is strictly larger than F . In fact MUCH larger:
In some sense, most subsets of Ω are outside F ! This means that most sets of sequences of coin
tosses cannot be expressed using countably many operations on elementary sets (i.e. sets from
R). The CURIOUS thing though is that we know very few of these sets: although the majority
of them are outside F , somehow, it is very heard to come up with an example.d

3.8 Uniform random variable

We will now construct our first non-discrete random variable. Consider the probability space
(Ω = {0, 1}N,F ,P) of the coin tossing experiment. Define

U(ω) =
ω1

2
+
ω2

22
+
ω3

23
+ · · · =

∞∑

k=1

ωk
2k
. (3.6)

Let Un(ω) :=
∑n

k=1
ωk

2k : these are simple random variables. Since U(ω) = limn→∞Un(ω), we
have, by Lemma 3.3, that U : (Ω,F ) → (R,B) is measurable (i.e. a random variable). It is
ONE random variable because it takes values in R. More specifically, observe that

0 ≤ U(ω) ≤
∞∑

k=1

1

2k
= 1.

So U(Ω) ⊂ [0, 1]. Our first observation is

Lemma 3.11. For any integer 0 ≤ a < 2n and any n ∈ N, unless ωi = 1 for all i > n,

U ≥ a

2n
⇐⇒ Un ≥ a

2n
.

Proof Note that 2nUn is an integer. If it is not the case that ωi = 1 for all i > n we have
2nU − 2nUn < 1, i.e. the integer part of 2nU equals 2nUn and hence 2nU ≥ a iff 2nUn ≥ a. �

Next, we compute the following probabilities:

Lemma 3.12. For any integer 0 ≤ a < 2n and any n ∈ N, we have

P(U ≤ a/2n) = a/2n.

dIn some sense, this exercise is a baby version of Gödel’s theorem which says, naively speaking, that most
theorems cannot be proved. Except that we hardly ever encounter them.
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Proof Using Lemma 3.11 we find that

P(U < a/2n) = P(Un < a/2n).

We use induction on n. To start, let n = 1. Observe that P(U1 < 1/2) = P(ω1 = 0) = 1/2, as
required. Now assume the statement to be true up to index n− 1. Write

Un(ω) =
ω1

2
+

1

2
Yn−1(ω),

Yn−1(ω) =
ω2

2
+
ω3

22
+ · · · + ωn−1

2n−1
.

Therefore

P(Un < a/2n) = P(ω1 = 0, Yn−1 < a/2n−1) + P(ω1 = 1, Yn−1 < a/2n−1 − 1)

= 1
2P(Yn−1 < a/2n−1) + 1

2P(Yn−1 < a/2n−1 − 1).

By the induction hypothesis, P(Yn−1 < c/2n−1) = c/2n−1 for all c < 2n−1 (why?). If a ≤ 2n−1,
the second term in the display is 0 and the first equals (1/2) × (a/2n−1) = a/2n, as needed. If
2n−1 < a < 2n, the first term equals 1/2 and the second equals (1/2) × (a/2n−1 − 1); the sum
gives again a/2n. �

Finally, we have

Lemma 3.13. For any real number x ∈ [0, 1],

P(U < x) = P(U ≤ x) = x.

Proof Let [y] denote the largest integer not exceeding the real number y. Define, recursively,

z1 = x, ξ1 = [2z],

zn+1 = zn −
ξn
2n
, ξn+1 = [2n+1zn+1].

We have 2nzn+1 = 2nzn − ξn = 2nzn − [2nzn] ≤ 1, so zn+1 ≤ 1/2n for all n. Therefore the
sequence zn converges to 0 and the numbers ξn are either 0 or 1. We also have

xn :=
ξ1
2

+
ξ2
22

+ · · · + ξn
2n

= (z1 − z2) + (z2 − z3) + · · · + (zn − zn+1) = x− zn+1,

and so xn → x, as n→ ∞. Also, xn is of the form a/2n, where a is an integer. So P(U ≤ xn) =
xn. Since xn actually increases to x, we have ∪∞

n=1{U ≤ xn} = {U < x}, and so taking limits
we get P(U < x) = x, for all x ≤ 1. This also implies P(U ≤ x + 1/n) = x + 1/n for all n
sufficiently large. But ∩n{U ≤ x+ 1/n} = {U ≤ x} and so, taking limits, P(U ≤ x) = x. �

Corollary 3.2.
P(U = x) = 0, for all x ∈ [0, 1].

So the random variable U takes no specific value with positive probability. Yet, U exists (we
constructed it). This is curious, but we can (must) get used to it. Any real random variable
with this property is called continuous random variable. In books, U has a name: it is
called uniform random variable on the interval [0, 1].

Corollary 3.3. Let Q be the set of all rational numbers in [0, 1]. Then

P(U ∈ Q) = 0.

Proof The set Q is enumerable (has countably many points). Hence

P(U ∈ Q) = P(∪q∈Q{U = q}) =
∑

q∈Q

P(U = q) = 0.

�
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3.9 Probability, revisited

Recall, once more, that a probability P defined on a σ-field F of subsets of a set Ω is a function
P : F → R such that (i) P(Ω) = 1, and (ii) P(∪nAn) =

∑
nP(An), if the An are mutually

disjoint elements of F .

If Ω is a countable set then we know that it suffices to define P on singletons, i.e. knowledge
of P{ω} for all ω ∈ Ω implies knowledge of P(A) for all A ∈ F . Indeed,

P(A) =
∑

ω∈A
P{ω}.

We saw, in the previous section, the necessity to define P on sets which are not countable.
Can’t we define P{ω} for all ω in this case? The argument is simple. Suppose we did do so.
Let Ω+ := {ω ∈ Ω : P{ω} > 0}, and, for each n ∈ N, Ωn = {ω ∈ Ω : P{ω} ≥ 1/n}. This
is a finite set with at most n points. Observe that ∪nΩn = Ω+. But this tells us that Ω+ is a
countable set. So this poses a “philosophical” problem: If we want to define a random variable
that is uniformly distributed on the uncountable set [0, 1] by defining probabilities of singletons,
then we’d have to pick a countable subset of [0, 1] and define probabilities of points there. But
which one to pick? We cannot give preference to any particular countable subset.

The way out is not to define probabilities on single points, but, rather, on sets, as we did in
the previous section. We then do not give preference to any particular countable subset, but we
lose something “intuitive”: we assign zero probability to every individual point. This is what
needs to be done, both for physical and mathematical reasons, and this is what shall be done
hereafter: We will be defining probabilities on sets.

But another burden appears now: whereas, in the countable case, we were free to define
probabilities of points at will (as long as they summed up to something finite), in the general
case we cannot define probabilities of sets at will: we must respect the countable additivity
property (ii) above. Since there are far too many sets, we will try to see how to define P on a
class of selected few of them. So read the next section.

3.10 Distribution functions

Consider a real random variable X : (Ω,F ) → (R,B) and put a probability P on Ω. Recall the
definition of the law PX of X:

PX(B) = P(X ∈ B), B ∈ B.

Up until the middle of the 19th century, a function was an object that was given by a formula.
Nowadays, of course, a function is more abstract: we certainly need no formulae to comprehend
what a function is. However, let us take the old-fashioned point of view. Clearly, PX is a
function whose arguments are sets (elements of B). These are a lot of arguments! And, as we
know, we don’t need all of them because, for example, if B = B1 ∪ B2 and B1 ∩ B2 = ∅, then
PX(B) = PX(B1) + PX(B2). To put it pedantically, we can’t define PX(B) anyway we like.
We must make sure that it is consistent (countable additivity must hold).

So the question is: can we throw away some (many) of the values P(B) without
losing information?

The answer is yes. It suffices to know PX(B) only for B of specific form. There are many
choices. One choice is to take

B = (−∞, x],
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where x ranges from −∞ to ∞ and consider only (see Example 1.5 )

F (x) := PX(−∞, x], x ∈ R. (3.7)

So I claim that:

Lemma 3.14. Knowledge of PX on this class of sets only (semi-infinite intervals) implies
knowledge of PX on the whole of B.

This is a big claim. But we shall prove it by construction. First, let us see the properties of
F .

Lemma 3.15. (i) x1 < x2 ⇒ F (x1) ≤ F (x2), (ii) limx→−∞ F (x) = 0, (iii) limx→+∞ F (x) = 1,
(iv) limn→∞ F (x+ 1/n) = F (x).

Proof (i) If x1 < x2 we have (−∞, x1] ⊂ (−∞, x2] and so PX(−∞, x1] ≤ PX(−∞, x2].
(ii)&(iii) Since F is monotonic with values between 0 and 1 it has a limit both as x tends
to −∞ and +∞. We have ∩n∈Z(−∞, n] = ∅, so PX(−∞, n] → 0 as n → −∞. Similarly,
∪n∈Z(−∞, n] = R, so PX(−∞, n] → PX(R) = 1 as n→ +∞. (iv) ∩n(−∞, x+ 1/n] = (−∞, x].
�

Remarks:
1. Notice that F (x− 1/n) does NOT necessarily converge to F (x) because ∪n(−∞, x− 1/n] =
(−∞, x), and so limn→∞ F (x − 1/n) = PX(−∞, x) which will be different from PX(−∞, x] if
PX{x} > 0.
2. There is no good reason that we chose this class of sets, other than people have been using it
by convention. For instance, we could have chosen open semi-infinite interval (−∞, x), in which
case (iv) of Lemma 3.15 would be replaced by limn→∞ F (x− 1/n) = F (x).

Proof of Lemma 3.14 Consider the coin-flip Ω = {0, 1}N. U(ω) =
∑∞

n=1
ωn

2n . Then U is a
random variable and P is, indeed, a probability on (Ω,F ), where F is defined through (3.4) or
(3.5). We also showed that P(U ≤ u) = u for all u ∈ [0, 1]. Suppose now that F , as in (3.7), is
given. Define

F−1(u) := sup{x ∈ R : F (x) ≤ u}. (3.8)

By Lemma 3.3, F−1(U) is a random variable. In other words, F−1◦U : (Ω,F ) → (R,B) is
measurable. Suppose that, for some u, t, we have F −1(u) ≤ t. This means that t is an upper
bound of the set {x ∈ R : F (x) ≤ u}. Hence for all x ∈ R, if F (x) ≤ u then x ≤ t. Equivalently,
for all x ∈ R, if x > t then F (x) > u. Equivalently, for all ε > 0, F (t+ ε) > u. Equivalently, for
all n ∈ N, F (t+ 1/n) > u. Thus,

{ω ∈ Ω : F−1(U(ω)) ≤ t} = {ω ∈ Ω : ∀n ∈ N F (t+ 1/n) > U(ω)}.
Hence the probabilities of the two sets (notice they both belong to F ) are the same:

P(F−1(U) ≤ t) = P(∀n ∈ N F (t+ 1/n) > U).

By the fact that P(An) → P(A) if An is a decreasing sequence of sets with intersection A, we
have

P(∀n ∈ N F (t+ 1/n) > U) = lim
n→∞

P(U < F (t+ 1/n)).

By Lemma 3.13, and the right-continuity of F (Lemma 3.15),

lim
n→∞

P(F (t+ 1/n) > U) = lim
n→∞

F (t+ 1/n) = F (t).

Thus the random variable F−1◦U has the same law as X. Hence, for all B ∈ B,

PX(B) = P(F−1(U) ∈ B) = P{ω ∈ {0, 1}N : F−1(U(ω)) ∈ B}
So, knowledge of PX on sets of the form (−∞, x] implies knowledge of PX(B) for all B ∈ B by
the explicit formula of the last display. �
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Definition 3.1. A function F : R → R is called distribution function iff (i) x1 < x2 ⇒ F (x1) ≤
F (x2), (ii) limx→−∞ F (x) = 0, (iii) limx→+∞ F (x) = 1, (iv) limn→∞ F (x+ 1/n) = F (x).

Corollary 3.4. If F is a distribution function then there exists a probability Q on (R,B) such
that Q(−∞, x] = F (x) for all x ∈ R.

Proof Let Ω = {0, 1}N. Let F be as in (3.4) or (3.5). Let P be the probability on
(Ω,F ) as in Theorem 3.1. Let U : (Ω,F ) → (R,B) be the random variable defined by
U(ω) =

∑∞
n=1 2−nωn. Let F−1 be defined by (3.8). Let X = F−1◦U . Then Q = PX . �

Lemma 3.16. Let X be one real random variable with law PX and distribution function F (x) =
PX(−∞, x], x ∈ R. Then (i) P(X ∈ (a, b]) = F (b) − F (a), (ii) P(X ∈ (a, b)) = F (b−) − F (a),
(iii) P(X ∈ [a, b]) = F (b) − F (a−), (iv) P(X = a) = F (a) − F (a−).

Proof (i)
(a, b] = (−∞, b] − (−∞, a].

(ii)
(a, b) = ∪n∈N(a, b− 1/n]

(iii)
[a, b] = ∩n∈N(a+ 1/n, b].

(iv)
{a} = [a, a].

�

EXERCISE 16. Carefully justify the formulae in the proof of Lemma 3.16.

EXERCISE 17. There is nothing kosher about choosing F so that it is right continuous. It
is, merely, a convention. Another choice could be F (x) = P(−∞, x), which (show this) results
into a left continuous function. Yet another choice is to take this last function and modify it at
each of points of discontinuity x and giving it the value 1

2(F (x−) + F (x+)).

3.11 Types of distribution functions

In this section we discuss the various kinds of distribution functions on R.

3.11.1 Discrete distribution functions

A discrete distribution function is the distribution function of a discrete random variable X with
values in some countable subset S of R. Assume that p(s) = P(X = s) > 0 for all s ∈ S. Such a
distribution function satisfies F (s)−F (s−) > 0 for all s ∈ S. Indeed, F (s)−F (s−) = P(X = s).
Also, if (a, b) is an open interval containing no points of S, then F is constant on (a, b). Indeed,
if a < x < b then F (x) − F (a) = P(a < X ≤ x) =

∑
s∈S,a<s≤xP(X = s) = 0.

Example 3.4. Let X be a random variable such that P(X = n) = 2−n, n ∈ N. Then its
distribution function looks like

1 2 3 4 5
0

1

0
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Example 3.5. Let X be a random variable such that for every rational number of the form
m/n where m,n are integers with no common factors, we have P(X = m/n) = c2−(m+n) where
c is chosen so that P(X ∈ Q) = 1. Its distribution function is discrete because Q is countable.
Unfortunately, I can’t draw it. (There are no intervals (a, b) containing no rational points.)

3.11.2 Continuous distribution functions

A distribution function F is continuous if it is a continuous function, i.e. if F (x) − F (x−) = 0
for all x ∈ R.

Example 3.6. Consider the random variable U with P(U ≤ u) = u for all u ∈ [0, 1]. Such a
random variable exists (we constructed it). Its distribution function looks like

0
0

1

1

Excepting the points 0, 1 we have that it is also differentiable with derivative f(u) = 1 if
0 < u < 1 and 0 otherwise.. If we arbitrarily define f(0) = f(1) = 0, we also have

∫ u
−∞ f(t)dt =

F (u) for all u ∈ R. We like such distribution functions:

Absolutely continuous distribution functions

A distribution function F is called absolutely continuous if there exists a function f (called
density of F ) such that

F (x) =

∫ x

−∞
f(t)dt, x ∈ R.

e The density is not uniquely defined. For instance, it can be changed on a finite set and such a
change will not affect the integral above. Usually, onef imposes additional regularity conditions,
such as continuity, resulting in uniqueness.

But not all continuous distribution functions are absolutely continuous:

Singularly continuous distribution functions

A distribution function F is called singularly continuous if it is continuous but not abso-
lutely continuous. We need to show that there are such functions.

Example 3.7. Consider the coin-flip space (Ω = {0, 1}N,F ,P) and let

V (ω) :=

∞∑

n=1

2ωn
3n

.

eThe integral in the display is a Lebesgue integral. For a definition, skip to §3.13.3. For the time being, you
may think of it as the standard Riemann integral of Integral Calculus.

f unconsciously
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EXERCISE 18. Show that the random variable V defined in Example 3.7 has a continuous
but not absolutely continuous distribution function.

3.11.3 General distribution functions

Suppose that F,G are distribution functions. Then, for any λ ∈ (0, 1), the function λF+(1−λG)
is a distribution function. (Probabilistically, if X,Y are random variables with distribution
functions F,G, respectively, then we can define a new random variable Z which equals X with
probability λ or Y with probability 1−λ.) So, if F is discrete andG continuous then λF+(1−λG)
is neither discrete nor continuous: it is mixed. The question is: Can we exhaust all distribution
functions by taking mixtures of the three types mentioned above? The answer is yes:

Theorem 3.2. Let F be a distribution function on R. Then F can be uniquely written as

F = λdFd + λacFac + λscFsc

where Fd, Fac, Fsc are discrete, absolutely continuous, singularly continuous distribution func-
tions, respectively, and where the coefficients are nonnegative such that λd + λac + λsc = 1.

The last two terms of this decomposition are known as the continuous part of F . The first
two terms are known as the singular part of F . We will not prove this theorem, but refer, e.g.
to [2].

3.11.4 Differentiation: a word of caution

The subject of densities involves the concept of a derivative of functions that are not necessarily
everywhere differentiable. Mimicking the definition of a density, we will say that a function G
has density g if G′(x) = g(x) for almost all x. The latter statement means that it holds true that
G′(x) = g(x) for all x in some set A whose complement is small in the sense that for all ε > 0
there exist intervals In, n ∈ N with lengths λn, n ∈ N, such that

∑
n λn < ε and Ac ⊂ ∪nIn. We

take this latter statement as a definition:

Definition 3.2. (i) We say that a set B ⊂ R has measure zero if all ε > 0 there exist intervals
In, n ∈ N with lengths λn, n ∈ N, such that

∑
n λn < ε and B ⊂ ∪nIn.

(ii) A function G : R → R is said to be almost everywhere differentiable if G′(x) exists
for all x ∈ A where Ac has measure zero.

We can verify the following:

• Any countable set has measure zero.
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• A set B ⊂ [0, 1] has measure zero if and only if a uniform random variable U in [0, 1]
satisfies P(U ∈ B) = 0.

• An absolutely continuous distribution function is almost everywhere differentiable.

What kind of functions G are almost everywhere differentiable with a derivative g that can
be used to recover the function? That is, for what kind of functions G can we apply the
Fundamental Theorem of Calculus (FTC), i.e. the statement that G(b) − G(a) =

∫ b
a g(x)dx?

Calculus tells us that if G is piecewise continuously differentiable then this is true. However,
we saw, by means of distribution functions, not only that the FTC holds more generally but
it is desirable to understand it more generally because random variables with not everywhere
differentiable distribution functions abound in theory and in practise. Here is a definition.

Definition 3.3. A function G : R → R is called absolutely continuous if for all ε > 0
there exists a δ > 0 such that for any finite collection of disjoint intervals [ak, bk] we have∑

k |G(bk) −G(ak)| < ε provided that the sum of the lengths of the intervals is less than δ.

EXERCISE 19. A differentiable function is absolutely continuous. An absolutely continuous
function is continuous.

Theorem 3.3. Any absolutely continuous function G is differentiable almost everywhere and if
g is its derivative then the FTC holds.

For a proof see [2]. Alternatively, one can use Probability Theory to prove all that, pro-
vided that one has understood the theory of Martingales, a subject of a later chapter. Indeed,
much of this generalised differentiation theory achieves a beautiful interpretation and becomes
comprehensible in probabilistic terms, via Martingale Theory.

EXERCISE 20. Show that a continuous and piecewise differentiable function G is almost
everywhere differentiable.

3.12 Transformation rules and densities

Consider a random variable X : (Ω,F ) → (R,B). Suppose P is a probability on (Ω,F ). We
are interested in the distribution PX of X. Suppose, for some reason, we don’t like it and
want to change it to something else. There are two ways to do this. First, we can change the
probability P and replace it by some other probability Q. Then PX will be replaced by QX .
Second, we can take a function H : (R,B) → (R,B) and replace X by H ◦X. Then PX is
replaced by PH◦X . The two procedures are not, in general, equivalent.

Suppose, for instance, that X is a discrete random variable. Then any one-to-one function H
will not change the probabilities of singletons {s} such that PX{s} > 0, but, merely, will rename
them: {s} will be transformed to {H(s)} and its probability will remain the same. Even if H
is not one-to-one, there is not much that H can do to change the probabilities. Consider, for
instance, a random variable X with values 1, 2, 3 and probabilities p1, p2, p3, respectively. Then
the most a function H can do is either be one-to-one, in which case H(1),H(2),H(3) will retain
the old probabilities, or map two points, say 1, 2, to a single point, with probability p1 + p2 and
leave the the third intact. Thus, the types of changes in the distribution of a discrete X that
can be achieved by taking a function of it are quite restricted. To really change its distribution
ad libitum, we need to change the underlying probability P.

For the case of absolutely continuous random variables, the story is different: a merely one-
to-one function H can simultaneously change the values and the distribution in a quite general
fashion.
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Theorem 3.4. Let X be an absolutely continuous random variable in R with density f . Let
ϕ : R → R be strictly increasing differentiable function and let ψ be its inverse function. Then
ϕ(X) a random variable with absolutely continuous distribution function and density

ψ′ · f◦ψ on ϕ(R),

and 0 elsewhere.

Proof Since ϕ is strictly increasing, its inverse function exists and has domain ϕ(R). Then,
the distribution function of ϕ(X) is, for any t ∈ ϕ(R),

P(ϕ(X) ≤ t) = P(X ≤ ψ(t)) =

∫ ψ(t)

−∞
f(x)dx.

By changing variable in the integral we have

∫ ψ(t)

−∞
f(x)dx =

∫ t

−∞
f(ψ(s))ψ′(s)ds,

where we set ψ′(s) = 0 for s 6∈ ϕ(R). From the definition of an absolutely continuous distribution
function we see that, indeed, ϕ(X) has absolutely continuous distribution function and its density
is the function inside the last integral. �

EXERCISE 21. Let U be a uniform random variable in the interval (0, 1). Find the density

function of ee
U
.

Theorem 3.4 assumes that ϕ is strictly increasing. It is immediate to find out the formula
for strictly decreasing ϕ. Generalising to more general functions is possible and relatively easy
for random variables with values in R (the story in Rd is more complicated). For instance, we
may assume that ϕ is piecewise differentiable. The problem becomes a problem in differential
calculus and the general theorem is omitted. However, an example is due:

EXERCISE 22. Let X be a random variable with density f(x) = c(1 + x2)−1, x ∈ R. Let
ϕ(x) = cosh(x). Find the density (and hence show that it exists) of ϕ(X).

3.13 Expectation

The expectation of one real random variable is, if it can be defined, an important numerical
aspect of the random variable. It is justified, for instance, by the Theorem (Law) of Large
Numbers which will be proved at a later chapter.

It is easy to define the expectation of a discrete random variable X with values in R and
probability mass function p(x). Let S be the set of x such that p(x) > 0. Then

EX =
∑

x∈S
xp(x),

provided that this sum can be defined. We know from Analysis (see [2]) that the sum of positive
numbers can be defined irrespective of which order we sum the numbers up. However, not all
the summands above are necessarily positive. So let us consider the positive and negative terms
separately and try to define

EX =
∑

x∈S+

xp(x) −
∑

x∈S−

(−x)p(x),
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where S+ := {x ∈ S : p(x) > 0}, where S− := {x ∈ S : p(x) < 0}. Each of the two sums,
separately, is a sum of positive terms, hence it is well-defined. The only “problem” is that such
a sum can take value +∞. If both sums are finite then EX is a finite number. If the first sum is
+∞ but the second finite then EX = +∞. Similarly, if the first is finite but the second infinite,
then EX = −∞. The only case where we cannot talk (cannot define) EX is when both sums
are infinite.

When X has absolutely continuous distribution function with density f , one can define EX
similarly:

EX =

∫ ∞

0
xf(x)dx−

∫ 0

−∞
(−x)f(x)dx,

provided that not both integrals are infinity.

In the general case, we need to be more prudent. We will treat the general case, not only
because there are random variables which are neither discrete or absolutely continuous but
because we can seldom (very seldom indeed) rely on knowledge of the probability mass function
or density function.

3.13.1 Definition of expectation

We are going to define the expectation of a random variable X : (Ω,F ) → (R,B) with respect
to a probability P sitting on (Ω,F ). We will use the notation EPX or, simply, EX is the
probability P is understood from the context. After constructing this, we will see that it does
not depend on the choice of probability space, but only on the law of X, namely, we shall show
that if X ′ : (Ω′,F ′) → (R,B) is another random variable and P′ a probability on (Ω′,F ′) such
that PX = P′

X′ then EPX = EP′X ′.

B SIMPLE RANDOM VARIABLES

The simplest possible random variable is

1A(ω) =

{
1, if ω ∈ A,
0, if ω 6∈ A

Since 1A takes value 1 with probability P(A) or 0 with the complementary probability, it is
only reasonable to define

E1A = P(A).

We “know” that the expectation should be linear. So we can extend this definition to linear
combinations of indicators (simple random variable) and define

E(a11A1
+ · · · + am1Am) = a1P(A1) + · · · + amP(Am). (3.9)

Is this a good definition? There is a slight issue here because a simple random variable can be
written as linear combination of indicators in two different ways. For example

81A − 31B = 81A\B − 31B\A + 51AB .

Using the left side we should define the expectation of it 8P(A) − 3P(B), while, using the right
side, as 8P(A \ B) − 3P(B \A) + 5P(AB). So we must have

8P(A) − 3P(B) = 8P(A \B) − 3P(B \ A) + 5P(AB).

This is true because of additivity of P. Indeed, write P(A) = P(A \ B) + P(AB), P(B) =
P(B \ A) + P(AB), substitute in the left side, and you obtain the right side. This argument
extends to the general case and so the definition (3.9) is good.
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Lemma 3.17 (algebraic properties). Suppose ξ, η are simple random variables on the same
probability space (Ω,F ,P). Then:
(i) If P(A) = 0 then Eξ1A = 0.
(ii) E(cξ) = cE(ξ) for all c ∈ R.
(iii) E(ξ + η) = Eξ + Eη.
(iv) If P(ξ ≥ 0) = 1 then Eξ ≥ 0. If P(ξ ≤ η) = 1 then Eξ ≤ Eη.

Proof (i) Suppose A is an event in F with P(A) = 0. Then Eξ1A = 0 because: If ξ =∑
k ak1Ak

then ξ1A =
∑

k ak1AkA and so Eξ1A =
∑

k akP(AAk). But P(AAk) ≤ P(A) = 0,
for all k.
(ii), (iii), (iv) (Almost) immediate from the definition (3.9). �

We now concentrate to nonnegative simple random variables. We allow such a random
variable to take value +∞. In other words, ξ is a nonnegative simple random variable if ξ =∑m

i=1 ai1Ai
, with ai ∈ R∪{+∞} for all i. The expectation of such a random variable is defined

as before: Eξ =
∑m

i=1 aiP(Ai) and the possibility that one of the values may be equal to +∞
worries us not, for all numbers are nonnegative, so the worst that can happen is that Eξ may
be +∞.

Lemma 3.18 (analytical properties). Suppose ξ, ξ1, ξ2, . . ., η1, η2, . . . are nonnegative simple
random variables, and A ∈ F . Then:
(i) If ξn is an increasing sequence with limit 1A then Eξn has limit P(A).
(ii) If ξn is an increasing sequence with limit ξ then Eξn has limit Eξ.
(iii) If both ξn, ηn are increasing sequences such that limn ξn(ω) = limn ηn(ω) for all ω ∈ Ω,
then Eξn, Eηn converge to the same limit.

Proof (i) Let ε > 0. If ω ∈ A, then ξn(ω) converges to 1 and so, for all large n, ξn(ω) >
1 − ε. In other words, the sequence of events {ξn > 1 − ε} is increasing with union A. Hence
P(ξn > 1 − ε) increases and has limit P(A). But

1A ≥ ξn ≥ (1 − ε)1(ξn > 1 − ε).

Therefore, by Lemma 3.17(iv),

P(A) ≥ Eξn ≥ (1 − ε)P(ξn > 1 − ε).

Since the last term converges to P(A) and since ε is arbitrary, we have that Eξn converges to
P(A).
(ii) Let a1, a2, . . . , am be the distinct nonzero values of ξ. Then ξ =

∑m
i=1 ai1(ξ = ai). Since

ξn ↑ ξ, we have ξn1(ξ = ai) ↑ ξ1(ξ = ai) = a11(ξ = ai), and so, a−1
i ξn1(ξ = ai) ↑ 1(ξ = ai).

Applying (i), we have E[a−1
i ξn1(ξ = ai)] ↑ P (ξ = ai), and so, by Lemma 3.17(ii), E[ξn1(ξ =

ai)] ↑ aiP (ξ = ai), for all i = 1, . . . ,m. Summing over i, we have

m∑

i=1

E[ξn1(ξ = ai)] ↑
m∑

i=1

aiP (ξ = ai).

By Lemma 3.17(iii), the left side equals Eξn, while, by the definition (3.9), the right side equals
Eξ.
(iii) Since both sequences are increasing and have the same limit we have

lim
m→∞

(ξn ∧ ηm) = ξn, lim
n→∞

(ξn ∧ ηm) = ηm.

By (ii), we have
lim
m→∞

E(ξn ∧ ηm) = Eξn, lim
n→∞

E(ξn ∧ ηm) = Eηm.

Since the numerical sequence E(ξn∧ηm) is increasing in both arguments, we have that the limits
over n and over m can be interchanged and so limn→∞ Eξn = limm→∞ Eηm. �
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B NONNEGATIVE RANDOM VARIABLES

Suppose that X is a nonnegative random variable that may, possibly, take value +∞. We define

EX := sup{Eξ : ξ is simple nonnegative, and ξ ≤ X}.

We immediately have that there exists a sequence ηn of simple random variables such that
ηn ≤ X for all n and Eηn → EX.

Lemma 3.19. For ANY sequence ξn of simple nonnegative random variables such that ξn ↑ X,
we have Eξn ↑ EX.

Proof As we just pointed out, there is one sequence ηn of nonnegative simple RVs such
that ηn ≤ X and Eηn ↑ EX. Let ξn be a sequence of simple random nonnegative variables such
that ξn ↑ X. Define ζn = max(η1, . . . , ηn, ξn). Clearly, ζn is simple, and ζn ≤ X. Also, ζn is
increasing with limit X. Since both ξn and ζn increase to the same limit, by Lemma 3.18(iii),
Eξn and Eζn have the same limit. But ηn ≤ ζn ≤ X. Hence Eηn ≤ Eζn ≤ EX. Since Eηn has
limit EX, we conclude that Eζn has limit EX. Therefore Eξn has limit EX also. �

In the course of the proof we said that we can find a sequence of simple functions that
increases to X. This is done through, for example, the functions τn defined by (3.1).

τn(x) := 2−nd2nxe ∧ n.

Since

dxe =

∞∑

k=1

1(k − 1 ≤ x < k), x ≥ 0

we can write

τn(x) :=

n2n∑

k=1

2−nk1(k − 1 ≤ 2nx < k), x ≥ 0.

Each τn is left-continuous and τn(x) → x as n → ∞ for each x. Moreover, τn(x) ≤ τn+1(x) for
all x. Therefore, for any nonnegative RV X, we have that τn(X) is an increasing sequence of
simple nonnegative RVs with τn(X) ↑ X and, by Lemma 3.19,

EX = lim
n→∞

n2n∑

k=1

k

2n
P

(
k − 1

2n
≤ X <

k

2n

)
.

Extending Lemma 3.19, we obtain

Theorem 3.5 (monotone convergence theorem). For ANY sequence Xn of nonnegative random
variables such that Xn ↑ X, we have EXn ↑ EX.

Proof By Lemma 3.19, EX = limm→∞ Eτm(X). By the left-continuity of τm, we have
τm(Xn) ↑ τm(X), as n → ∞, and by Lemma 3.19, the same is true after taking expectations.
So:

EX = lim
m→∞

lim
n→∞

Eτm(Xn).

Because the numerical sequence Eτm(Xn) is increasing in both indices m and n, we can inter-
change the limits:

EX = lim
n→∞

lim
m→∞

Eτm(Xn) = lim
n→∞

EXn,

where the last equality follows, again, from Lemma 3.19. �
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Lemma 3.20. Let X,Y be nonnegative random variables on (Ω,F ,P). Then:
(i) EX = 0 if and only if P(X > 0) = 0.
(ii) E(cX) = cEX for all c ≥ 0.
(iii) E(X + Y ) = EX + EY .
(iv) If P(X ≤ Y ) = 1 then EX ≤ EY .

Proof We only prove half of (i). The rest are easy. We have {X > 0} is the limit
of {X > 1/n}, as n → ∞. Hence P (X > 0) = limn→∞ P (X > 1/n). If P (X > 0) > 0 then
P (X > 1/n) > 0 for some n and, since X ≥ (1/n)1(X > 1/n) we have EX ≥ (1/n)P(X > 1/n),
i.e. EX > 0. �

Lemma 3.21 (Fatou’s lemma). For any sequence Xn of nonnegative random variables, E limXn ≤
limEXn.

Proof We have
inf
k≥n

Xk ≤ X`, ` ≥ n.

So, by (iv) of Lemma 3.20,
E inf
k≥n

Xk ≤ EX`, ` ≥ n,

and so
E inf
k≥n

Xk ≤ inf
`≥n

EX`.

Both sides are increasing numerical sequences in n. The right side increases to limEX`. The
left side increases, by Theorem 3.5, to E limXn. �

B GENERAL RANDOM VARIABLES

Suppose now X is a random variable with values in R. We say that X has an expectation if not
both X+ = max(X, 0) and X− := −(−X)+ have infinite expectations. In this case, we define

EX = EX+ −EX−.

The definition is, of course, well-motivated: for any number x, we have x = x+ − x−.

EXERCISE 23. If x is a real number, we let, as usual, x+ := max(x, 0), x− := −(−x)+. Show
that x− = −min(x, 0) and derive the identities

x = x+ − x−, |x| = x+ + x−, min(|x|, |y|) = 1
2 (|x| + |y| − |x− y|).

Show also that if a < b then (x ∨ a) ∧ b = (x ∧ b) ∨ a.

We say that X is integrable (with respect to P) if both EX+ and EX− are finite or, equiv-
alently, if E|X| <∞. (The latter follows from the identity |x| = x+ + x−.)

Lemma 3.22. Let X,Y be integrable random variables on (Ω,F ,P). Then:
(i) E(cX) = cEX for all c ∈ R.
(iii) E(X + Y ) = EX + EY .
(iv) If P(X ≤ Y ) = 1 then EX ≤ EY .

If A ∈ F we can define the expectation of X on A by:

E(X;A) := E(X1A).
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If P(A) > 0 we can define the expectation of X given A by:

E(X|A) :=
E(X;A)

P(A)
.

We remark that E(X|A) is expectation with respect to the restriction PA of P on A, i.e. with
respect to the probability

PA : F → R; PA(B) := P(AB), B ∈ F .

In other words,
E(X|A) = EPA

X.

EXERCISE 24. Show that |EX| ≤ E|X| (whenever EX is defined).

Theorem 3.6 (Dominated Convergence Theorem). Let Xn be a sequence of random variables
such that X(ω) = limn→∞Xn(ω) exists and such that |Xn(ω)| ≤ Y (ω) for all n and ω, and
E|Y | <∞. Then E|Xn −X| converges to zero.

Proof Apply Fatou’s lemma 3.21 to 2Y − |Xn −X|. �

3.13.2 Substitution rule

Lemma 3.23. Consider the measurable functions

(Ω,F )
Z−→ (S,S )

H−→ (R,B).

Let P be a probability on (Ω,F ). Let PZ be the law of Z. Then

EPH◦Z = EPZ
H,

whenever wither side exists. (Here, H◦Z is one real random variable on the probability space
(Ω,F ,P) and H is one real random variable on the probability space (S,S ,PZ).)

Proof Suppose H is an indicator random variable, i.e. H = 1B for some B ∈ S . Then
EPZ

1A = PZ(A) by the definition of the expectation of a simple random variable. On the other
hand, H◦Z = 1A(Z) is an indicator random variable on (Ω,F ): it is the indicator of the set
{ω ∈ Ω : Z(ω) ∈ A}. Hence, again by the by the definition of the expectation of a simple
random variable, EPH◦Z = P(Z ∈ A). But PZ(A) = P(Z ∈ A) by the definition of the law
of the random variable Z (see section 3.6). Suppose next that H is a simple random variable.
Use the above and linearity of expectation to get the result. Suppose that H is a nonnegative
random variable. Use Lemma 3.5. Finally, suppose that H has no sign restriction, and use the
definition of expectation. �

Corollary 3.5. If X is a real random variable on (Ω,F ,P) with expectation EPX and law PX

then
EPX = EPX

ι

where ι : R → R is the identity function: ι(x) ≡ x.

Therefore, the expectation of a random variable depends only on its law.

Suppose that X is a discrete random variable with values in a finite set S ⊂ R and probability
mass function p(x), x ∈ S. Since X =

∑
x∈S x1(X = x) is a simple random variable, we

immediately have that EX =
∑

x∈S xP(X = x) =
∑

x∈S xp(x), as needed. The same formula
holds for a discrete random variable with values in a countable set S: Simply enumerate the
elements of S and use monotone convergence theorem.

Let us now consider an absolutely continuous random variable X with density f . We would
like to show that EX is compatible with the definition given at the beginning of the section,
namely that it equals

∫
R
xf(x)dx. To do this, we need to revisit the notion of an integral:
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3.13.3 Expectation and densities

Let h : (R,B) → (R,B) be measurable and suppose h ≥ 0. Consider the random variable U on
the coin-flip space (Ω = {0, 1}N,F ,P), defined by (3.6). We define

∫
R
h(x)dx by

∫

R

h(x)dx :=
∑

n∈Z

Eh(U + n).

This is called the Lebesgue integral of h. We also define
∫ b
a h(x)dx by

∫ b

a
h(x)dx :=

∫

R

h(x)1(a ≤ x ≤ b)dx,

and, more generally, for any B ∈ B,
∫

B
h(x)dx :=

∫

R

h(x)1(x ∈ B)dx.

If h has no restriction on sign, we define
∫ b
a h(x)dx as

∫ b
a h

+(x)dx −
∫ b
a h

−(x)dx provided that
not both terms are infinite. This integral behaves like the ordinary Riemann integral for “nice”
functions (e.g. for continuous or piecewise continuous functions).

More generally, if F : R → R is an increasing function, we define
∫

R

h(x)F (dx) =

∫

R

h(F−1(x))dx,

where F−1(x) := inf{t ∈ R : F (t) > x}. This is the Lebesgue-Stieltjes integral. It is also denoted
by
∫

R
h(x)dF (x) or simply as

∫
R
hdF when the variable of integration needs no mentioning.

The following theorem connects what one learns in basic Calculus with
what we just defined. You absolutely need this theorem in order to make
the connection between the standard Calculus tricks and recipesg and
what we are talking about here.

Theorem 3.7. (i) If h is Riemann integrable on [a, b] then the Lebesgue integral
∫ b
a h(x)dx ex-

ists and coincides with the Riemann integral.
(ii) If h is bounded and measurable then it is Riemann integrable on [a, b] if the set of disconti-
nuities of h have measure zero, in the sense of Definition 3.2.

Example 3.8. For example, if h is piecewise continuous, then its discontinuities have measure
zero and so it is Riemann integrable.

Example 3.9. As a counterexample, consider the function h(x) = 1(x ∈ Q), 0 ≤ x ≤ 1. This
function is discontinuous on every point of [0, 1]. The interval [0, 1] does not have measure zero.
Hence it is not Riemann integrable. However, h is measurable and nonnegative, and so it does
have a Lebesgue integral: this integral equals Eh(U) = P(U ∈ Q) = 0.

Theorem 3.7 enables us to use all rules we learn in basic Integration Calculus to the case of
Lebesgue integration when the two integrals coincide.

Suppose now that X is a random variable with absolutely continuous distribution function
F and density f . Consider the function Q : B → R defined by

Q(B) :=

∫

B
f(x)dx.

Since Q(B) = PX(B) for B = (−∞, x], we have that Q = PX . More generally,

gI mean things like
R x

0
t2etdt = x2ex − 2

R x

0
tetdt = (x2 − 2x + 2)ex − 2.
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Lemma 3.24. Let PX be the law of a random variable X with density f . Then, for any
measurable g : (R,B) → (R,B),

∫

R

g(x)f(x)dx = EPX
g

provided that wither side exists.

Proof If g = 1B, then this is what was discussed before the Lemma. For g simple, we use
linearity. For general g we approximate. �

Corollary 3.6. Let PX be the law of an integrable random variable X with density f .
(i) If ι is the identity function on R then

∫

R

xf(x)dx = EPX
ι.

(ii)

EX =

∫

R

xf(x)dx.

Proof (i) follows from Lemma 3.24 with g = ι. (ii) follows from corollary 3.5 �

EXERCISE 25. Suppose that Z is a real random variable with absolutely continuous distri-
bution function and density fZ . Let H : (R,B) → (R,B) be a measurable function. Suppose
that the random variable X = H(Z) has density fX . Show that the expectation of X (if it
exists) can be computed in two ways:

EX =

∫

R

xfX(x)dx =

∫

R

H(z)fZ(z)dz.

EXERCISE 26. Let B ∈ B and let λ(B) :=
∫

R
1B(x)dx (Lebesgue integral). Show that

λ : B → R satisfies λ(∪nAn) =
∑

n λ(An) whenever the An are mutually disjoint elements of B

and that λ(A+ t) = λ(A) for all A ∈ B, t ∈ R, where A+ t := {a+ t : a ∈ A}. The function λ
is called length.

EXERCISE 27. Consider a compass with a laser pointer attached at both ends of the needle.
Suppose there is an infinite screen at some distance from the compass. Give it a spin and see
mark X the location of the light with respect to a fixed point O on the screen (positive if it is
to the right of O; negative if it is to the left). Show that EX is not defined. (You first must
translate this problem in Mathematics.)

EXERCISE 28. Consider the function F (x) :=
∑

k∈N 1(x ≤ k), x ≥ 0, F (x) = 0, x < 0. Show
that ∫

R

h(x)F (dx) =

∞∑

k=1

h(k),

whenever the sum on the right makes sense.

3.14 Inequalities

Mathematics needs inequalities probably more than equalities. Probability, in particular, which,
in some sense, contains a lot of approximation ideas needs inequalities. This section discusses
some basic ones.
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3.14.1 Markov, Chebyshev, Chernoff

Lemma 3.25 (Markov inequality). If X is a nonnegative random variable then

P(X ≥ t) ≤ EX

t
, t > 0.

Proof We have
t1(X ≥ t) ≤ X

and E is preserved by ≤. �

Definition 3.4. The variance of a real random variable X with EX 2 <∞ is defined by

varX := E(X −EX)2.

Lemma 3.26 (Chebyshev inequality). If X is a real random variable with EX 2 <∞ then

P(|X −EX| ≥ t) ≤ varX

t

Proof Apply the Markov inequality to |X −EX|. �

Lemma 3.27 (Chernoff inequality). If X is a real random variable then

P(X ≥ t) ≤ Eg(X)

g(t)

where g is a positive increasing function.

Proof Since g is increasing,

{X ≥ t} ⊂ {g(X) ≥ g(t)}

Now apply the Markov inequality to g(X). �

EXERCISE 29. Let X be a discrete random variable with P(X = k) =
(n
k

)
2−k, k = 0, 1, . . . , n.

Estimate P(X > na) for a > 0.5 using the above inequalities.

3.14.2 Jensen

A function ϕ : R → R is convex if

ϕ(pa+ (1 − p)b) ≤ pϕ(a) + (1 − p)ϕ(b)

for all a, b ∈ R and all 0 ≤ p ≤ 1. Notice that if ξ is a random variable with P(ξ = a) = p,
P(ξ = b) = 1 − p, this definition can be written as

ϕ(Eξ) ≤ Eϕ(ξ).

Jensen’s inequality generalises this observation:

Lemma 3.28. Let X be a real integrable random variable and ϕ a convex function. Then

ϕ(EX) ≤ Eϕ(X).

Geometrically, a convex function is such that the graph of the function on the interval [a, b]
lies below the straight segment with endpoints (a, ϕ(a)), (b, ϕ(b)).
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If we take a straight line with slope equal to the slope of this segment and move it down, at
some point it will be entirely below the whole graph of ϕ. Moreover, if we consider the set of all
straight lines that are below the graph of ϕ and take their envelope (the maximum) then this
equals ϕ. Namely,

ϕ(x) = max
`∈L(ϕ)

`(x), x ∈ R, (3.10)

where L(ϕ) is the collection of all functions `(x) ≡ αx + β such that ` ≤ ϕ. To show this
rigorously, observe that

a < b < c⇒ ϕ(b) − ϕ(a)

b− a
≤ ϕ(c) − ϕ(b)

c− b
,

by the definition of convexity. Let ε > 0, a = b− ε, c = b+ ε and so

D−ϕ(b) := lim
ε↓0

ϕ(b) − ϕ(b− ε)

ε
≤ lim

ε↓0
ϕ(b+ ε) − ϕ(b)

ε
:= D+ϕ(b),

where the limits exist by monotonicity. Let α be betweenD−ϕ(b) andD+ϕ(b). Then, if x > b+ε,
we have

ϕ(b+ ε) − ϕ(b)

ε
≤ ϕ(x) − ϕ(b)

x− b
,

and so

α ≤ D+ϕ(b) ≤ ϕ(x) − ϕ(b)

x− b
, x > b,

or α(x− b) + ϕ(b) ≤ ϕ(x), for all x ≥ b. Arguing similarly for all x ≤ b, we have

α(x− b) + ϕ(b) ≤ ϕ(x), x ∈ R.

Thus, the function `(x) := α(x − b) + ϕ(b) ≤ ϕ(x) belongs to L(ϕ) and also, `(b) = ϕ(b). This
proves (3.10).

Proof of Lemma 3.28:

ϕ(EX) = max
`∈L(ϕ)

`(EX) = max
`∈L(ϕ)

E`(X) ≤ E max
`∈L(ϕ)

`(X) = Eϕ(X).

The first equality is due to (3.10). The second uses linearity of expectation. The third uses
monotonicity of expectation. The last reuses (3.10). �

EXERCISE 30. Let a1, . . . , an be positive real numbers. Define their arithmetic, geometric
and harmonic mean by

An =
a1 + · · · + an

n
, Gn = (a1 · · · an)1/n, Hn =

n

a−1
1 + · · · + a−1

n
,

respectively, and show that An ≥ Gn ≥ Hn.



SMST C: Probability 3–31

3.15 Moments

Definition 3.5. When r > 0, the r-moment of a nonnegative RV X is defined as the quantity
EXr. The r-norm of a real RV X is defined as ||X||r := (E|X|r)1/r.

Lemma 3.29. The r-norm of X is increasing in r.

Proof Let r < s and ϕ(x) = xs/r, x > 0. Notice that ϕ is convex. (This follows from the
fact that its second derivative is positive.) Now apply the Jensen inequality. �

Corollary 3.7. If E|X|p <∞ for some p > 0 then E|X|r <∞ for all 0 < r < p.

3.16 Hölder, Minkowski and Cauchy-Bunyakowskii-Schwarz

Definition 3.6. If X,Y are real random variables on the same (Ω,F ,P), the quantity E(XY )
(whenever it is defined) is called correlation between X and Y . The quantity cov(X,Y ) :=
E((X −EX)(Y −EY )) is called covariance between X and Y .

Lemma 3.30 (Hölder inequality). Let X,Y be real random variables. Then

|E(XY )| ≤ ||X||p||Y ||q,

for any p, q > 0, p−1 + q−1 = 1, as long as all terms involved exist and are finite.

Proof Let (Ω,F ,P) be a probability space on which both X,Y are defined. Without loss
of generality assume that they are both nonnegative. Let q > 1 and assume that E(Y q) < ∞.
Consider the probability

Pq(A) :=
E(Y q

1A)

E(Y q)
, A ∈ F .

Let Eq denote expectation with respect to Pq. Therefore, for any nonnegative random variable
W : (Ω,F ) → (R,B),

EqW =
E(Y qW )

E(Y q)
. (3.11)

Letting, in (3.11), W = XY 1−q, we obtain

E(XY ) = E(Y q) Eq(XY
1−q).

Let p be defined from p−1 + q−1 = 1. Necessarily, p > 1. From Lemma 3.29 we have

EqZ ≤ (EqZ
p)1/p,

for any nonnegative random variable Z : (Ω,F ) → (R,B) with EZ p <∞. Therefore,

E(XY ) ≤ E(Y q) (Eq((XY
1−q)p))1/p

= E(Y q)

(
E(XpY qY (1−q)p)

E(Y q)

)1/p

= (E(Y q))1−1/p (E(XpY q+(1−q)p))1/p.

Since 1 − 1/p = 1/q and q + (1 − q)p = 0, the result follows. �
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Corollary 3.8. (Cauchy-Bunyakowskii-Schwarz) Let X,Y be real random variables. Then

|E(XY )| ≤ ||X||2||Y ||2,
as long as all terms involved exist and are finite.

Proof Notice that 1
2 + 1

2 = 1 and apply Hölder. �

Corollary 3.9. Let X,Y be real random variables. Let

ρ(X,Y ) := cov(X,Y )/
√

var(X)
√

var(Y ),

whenever the terms exist. Then
−1 ≤ ρ(X,Y ) ≤ 1.

Lemma 3.31 (Minkowski inequality). Let X,Y be real random variables. Then

||X + Y ||p ≤ ||X||p + ||Y ||p,
for any p > 1, as long as all terms involved exist and are finite.

Proof Use the Hölder inequality as follows:

E(|X + Y |p) = E(|X| |X + Y |p−1) + E(|Y | |X + Y |p−1)

≤ [E(|X|p)]1/p [E(|X + Y |(p−1)q)]1/q + [E(|Y |p)]1/p [E(|X + Y |(p−1)q)]1/q

= (||X||p + ||Y ||p) [E(|X + Y |p)]1/q,
�

3.17 Moment generating functions

Let X be a real random variable. Since, for any θ ∈ R, the random variable eθX is nonnegative,
its expectation exists (but may be equal to +∞). We define the function M : R → R ∪ {+∞}
by

M(θ) := E(eθX), θ ∈ R.

Notice that M(0) = 1. This function is useful if M(θ) < ∞ for some θ 6= 0. (Indeed, there are
cases where θ = 0 is the only point at which M is finite.) If X is a positive random variable,
then M(θ) <∞ for all θ ≤ 0. If X is a negative random variable, then M(θ) <∞ for all θ ≥ 0.
M depends only on the law of X. Indeed, using the Substitution Rule (Lemma 3.23) we can
write

M(θ) = EPX
(eθι), where ι(x) ≡ x,

and, if X has absolutely continuous distribution function F with density f , we can write

M(θ) =

∫

R

eθxf(x)dx (Lebesgue integral) .

The function M is called moment generating function because of the following:

Lemma 3.32. Suppose there exist a < 0 < b such that M(θ) <∞ for all a < θ < b. Then
(i) the r-moment of X exists for all r ∈ N and is given by the r-derivative of M at 0:

E(Xr) = DrM(0).

(ii)

M(θ) =
∞∑

r=0

E(Xr)

r!
θr, a < θ < b.

(iii) There is only one distribution function F such that if X has distribution function F then
it has moment generating function M .
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Proof [sketch] Using the Dominated Convergence Theorem 3.6, we can see that M is
infinitely differentiable at 0 with r-derivative equal to the r-moment of X. Moreover, we can
see that M is a real analytic function around 0. Hence Taylor’s theorem holds, which yields the
second claim. �



SMST C: Probability 3–34

B B B B B APPENDICES C C C C C

3.18 APPENDIX A: Sets

The logic of events plays a much more fundamental rôle in the whole subject than the layman could
imagine. We review basic concepts here.h

§ We express the statement that x is an element of (or belongs to) a set A by x ∈ A. The negation of the
latter is denoted by x 6∈ A. We write A ⊂ B for to express the statement “x ∈ A⇒ x ∈ B”. We let A∩B
be the intersection and A∪B the union of A and B. To save space, we often write AB in lieu of A∩B and
ABC in lieu of A∩B∩C. The set Ac is defined through: “x ∈ Ac ⇐⇒ x 6∈ A”. Näıve set theory and first
order logic are algebraically equivalent through the above and through: “A∩B ⇐⇒ x ∈ A and x ∈ B”,
“A ∪ B ⇐⇒ x ∈ A or x ∈ B”. We let B \ A = B ∩ Ac and we write B − A for B \ A if A ⊂ B. The
symmetric difference (‘exclusive or’) A4B is defined as the set of elements of A or B which do not belong
to both, i.e. A4B = (A \ B) ∪ (B \ A) = (A ∪ B) − (A ∩ B). If {Aj , j ∈ J} is a collection of sets we
let ∩j∈JAj be their intersection and ∪j∈JAj their union. Here, J is an arbitrary set. If J = N we write
∩j∈NAj = ∪∞

j=1Aj , and, as usually in Mathematics, the convention is that the symbol ∞ appearing on

top is not part of the index set (∞ is not a natural number).i Here is an example of how we translate
elementary logic (i.e. ordinary language, say English) in Mathematics: Consider the sentence

S = [after some day it will never rain again in Glasgow].

If we let
Ri = [it rains on the i-th day in Glasgow]

we can write S as
S = [∃i ∀j ≥ i notRi].

Taking the negation of this sentencej we get:

notS = not[∃i ∀j ≥ i notRi] = [∀i ∃j ≥ i Ri].

Translating this back into English, it reads:

notS = [for all days there will be a day in the future during which it rains in Glasgow]

and, since this is not too palatable even for the literati, we can express it, equivalently, as

notS = [it rains in Glasgow infinitely often].

What does this have to do with sets? Well, imagine there is a big set (the “universe”)–call it Ω–containing
all possible states of Glasgow at all days. At the minimum, we want to know whether it rains or not on
each day. So we decide to let an element of Ω be the sequence (ω1, ω2, . . .) of states of Glasgow, where
ωi takes values “rain” or “doesntrain” and represents what happens on the i-th day in Glasgow. So Ω is
the set of all these sequences, mathematically written as Ω = {rain, doesntrain}N. Then Ri can be taken
to be the set of all sequences ω ∈ Ω such that ωi = rain. You can then check that the set (subset of
Ω) S = ∪i ∩j≥i R

c
i corresponds to the statement S, while Sc = ∩i ∪j≥i Ri corresponds to the statement

notS. In this sense, the so-called Kolmogorov model of Probability merely puts within a mathematical
framework (that of Set Theory) what we intuitively feel as assigning numbers representing chance to
statements, to events, to situations describable by ordinary language. So Probability Theory is ordinary
logic together with numbers assigned to statements. We talk about logic in this Appendix and about
numbers in the next.

hThere are no numbers in this section; only sets. (Of course, numbers are sets; so the above declaration is
offered with apologies to set theorists.)

iCompare this with a sum of real numbers:
P∞

j=1
xj means that j runs over 1, 2, 3 . . . but does not take the

value ∞.
jTo which, I think, we can safely assign the truth value
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§ If A is a set then 2A is the set of its subsets. A set of sets (or “collection” of sets) is a subset of 2A.
If A has n elements then 2A has 2n elements. If N is the set of natural numbers then 2N has as many
elements as the set of real numbers. (And why, on earth, should we use the symbol 2A? To explain,
consider a simple set, say A = {x, y, z}. I can form a subset of A by putting a 1 to each element I pick
or 0 to each element I do not pick. For instance, 011 means “do not pick x, pick y, pick z”, i.e. it refers
to the subset {y, z}. We thus see there is a correspondence between subsets of A and triples of 0’s and
1’s. How many such triples do we have? Obviously, 2 × 2 × 2 = 23. This explains why we have 23 = 8
subsets. If A had n elements, you see there are 2n subsets and so the notation 2A is suggestive of this,
and we carry it on even to cases where A has infinite number of elements.)

§ If f : X → Y is a function then, for any B ⊂ Y we define f−1(B) = {x ∈ X : f(x) ∈ B}, and
for any A ⊂ X we define f(A) = {f(x) : x ∈ A}. Thus f can be lifted as a map from 2X into 2Y

and we also have a map f−1 from 2Y into 2X . We always have f(f−1(B)) ⊂ B and f−1(f(A)) ⊃ A.
Also, f−1(∩jBj) = ∩jf

−1(Bj) f
−1(∩jBj) = ∩jf

−1(Bj), f
−1(Bc) = f−1(B)c. However, f as a map on

sets does not behave that well (fortunately!) because f(∩Aj) ⊂ ∩jf(Aj) (equality, in general, fails), but
f(∪Aj) = ∪jf(Aj); also, f(A2 −A1) ⊂ f(A2) − f(A1).

§ The set of functions from X into Y is denoted by Y X . The notation is motivated by the fact that the
set of functions from {1, . . . , n} into R is “the same” as Rn. Consider, for example, the set of functions
from a set A into {0, 1}. This is denoted as {0, 1}A. Since there is a one-to-one correspondence between
this set of functions and the collection of subsets 2A of A (as explained above), the surprise that you may
have just experienced with this new notation should not be as high.

§ If A ⊂ Ω the function 1A : Ω → R, defined by 1A(ω) = 1 if ω ∈ A, and 0, otherwise, is the indicatork

of the set A. Note that 1A1B = 1AB , 1Ac = 1 − 1A. If A ⊂ B, then 1B−A = 1B − 1A. If AB = ∅

then 1A∪B = 1A + 1B . We can check that the ‘inclusion-exclusion formula’ 1A∪B = 1A + 1B − 1AB

holds for arbitrary A,B, by (if we want to be slick) using (1−1A)(1−1B) = 1−1A −1B +1A1B and
using the fact that 1A1B = 1AB while (1−1A)(1−1B) = 1Ac1Bc = 1AcBc = 1(A ∪ B)c = 1−1A∪B .
The inclusion-exclusion formula for many sets follows by expanding the product (1−1A1

) · · · (1−1An
).

§ Often, sets have elements which are themselves sets. (For example, the set of all sets of dishes in
a shop.) When we talk about sets of sets we refer to them as classes (or collections, or systems, or
aggregates) of sets.l

§ A class of sets R ⊂ 2Ω is a π-system if it is closed under pairwise intersections (A,B ∈ R ⇒ AB ∈ R).
If A ⊂ 2Ω then the intersection of all π-systems containing A is a π-system and is denoted by π(A ).

§ A class of sets D ⊂ 2Ω is a λ-system if it is closed under increasing differences (A,B ∈ D , A ⊂ B ⇒
AB ∈ D), and increasing limits (An ∈ D , An ⊂ An+1, for all n, ⇒ ∪n ∈ D). If A ⊂ 2Ω then the
intersection of all λ-systems containing A is a λ-system and is denoted by λ(A ).

§ A class of sets C ⊂ 2Ω is a field (or algebra) if it is a π system containing Ω and such that A ∈ C ⇒
Ac ∈ C . (Therefore, a field is closed under unions and any finite number of operations on its elements.)
If A ⊂ 2Ω then the intersection of all fields containing A is a field.

§ A class of sets F ⊂ 2Ω is a σ-field (or σ-algebra)m if it is a field and if A1, A2, . . . ∈ F ⇒ ∩∞
j=1Aj ∈ F .

If A ⊂ 2Ω then the intersection of all λ-systems containing A is a σ-field and is denoted by σ(A ).

kAlso called characteristic function, but, mostly, in Analysis. In Probability, if 1A is thought of as a random
variable, it is also called Bernoulli random variable.

lFor philological, rather than mathematical, reasons
mThe letter σ is supposed to mean “sum” and, in fact, a “sum” of countably many objects; in the case at hand

it represents “countable unions”
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§ If {Fj} is a collection of σ-fields on the same set then ∩jFj is a σ-field too: it is the largest σ-field
contained in all of them. (The intersection of σ-fields is never empty because every σ-field contains the
empty set.) However the union of σ-fields is not a nice object and we don’t consider it. Instead, we define
∨jFj to be the smallest σ-field containing all the Fj .

§ If A,B are sets, then A×B is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B. Similarly, if

{Aj , j ∈ N} is a sequence of sets then ×∞

j=1Aj is the set of all sequences (a1, a2, . . .) where aj ∈ Aj for

all j. Finally, if {At, t ∈ T} is an arbitrary collection of sets we may defined ×t∈TAt as the collection
of functions f ∈ AT , where A = ∪t∈TAt such that f(t) ∈ At for all t ∈ T . Notice that this definition
does not respect any “order” in the index set T even if this is there; the order imposed in the definition
of the Cartesian product of finitely or countably many sets is an extra bag that we have been forced to

carry (for good reasons). When A =×j∈JAj is a Cartesian product, we can define, for each i ∈ J , the
projection function ρi : A→ Ai by ρi : (aj , j ∈ J) 7→ ai.

§ Let (Ω1,F1), (Ω2,F2) be measurable spaces. Then F1 ⊗ F2 is the σ-field on Ω1 × Ω2 generated
by sets of the form A1 × A2, where A1 ∈ F1, A2 ∈ F2. It also equals σ(ρ1, ρ2), where ρ1, ρ2 are the
projection functions. It also equals the smallest σ-field containing the σ-field {A1 × Ω2 : A1 ∈ F1} and
the σ-field {Ω2 ×A2 : A2 ∈ F2}. The definition is extended for any finite product.

§ The Borel σ-field B on R is the σ-field generated by the class of open sets. (A set O is open if for
any any x ∈ O there is an ε > 0 such that [x − ε, x + ε] ∈ O.) It is also generated by intervals of the
form (a, b), a, b ∈ R. It is also generated by intervals of the form [a, b], a, b ∈ R. It is also generated by
intervals of the form (−∞, x], x ∈ R. (This last class of intervals forms a π-system.) The Borel σ-field
B(R2) on R2 = R×R is defined by B(R2) = B⊗B. Similarly, we define B(Rd) for any natural number
d, as B(Rd) = B(Rd−1) ⊗ B, by induction on d. Notice that B(Rd) is also generated by open sets
in Rd. (A set O ⊂ Rd is open if for any x = (x1, . . . , xd) ∈ Rd there is an ε > 0 such that the cube
[x1 − ε, x1 + ε] × · · · × [xd − ε, xd + ε] ∈ O.)

§ Let (Si,Si), i ∈ N be measurable spaces, and let S =×iSi. A rectangle is a subset of S of the form
B1 ×· · ·×Bj ×· · · with Bi ∈ Si for all i. A finite-dimensional rectangle is a rectangle such that Bk = Sk

for all k greater than some index j. A cylinder set is a subset of S of the form A × Sj+1 × Sj+2 × · · · ,
where A ∈ S1 ⊗ · · · ⊗Sj . A finite-dimensional rectangle is a rectangle and a cylinder set. A rectangle is
not necessarily a cylinder set. The collection of rectangles is π-system (the intersection of two rectangles
is still a rectangle; but the union of two rectangles is not a rectangle; the complement of a rectangle is
not a rectangle). Ditto for finite-dimensional rectangles. The collection of cylinder sets is a field (the
intersection of two cylinder sets is a cylinder set and the complement of a cylinder set is a cylinder set),
but not a σ-field. On S we can put a natural σ-field, denoted by

⊗
i Si: it is the σ-field generated by

cylinder sets; it is also generated by rectangles; it is also generated by finite-dimensional rectangles; it is
also the smallest σ-field such that every projection πi : (S,S ) → (Si,Si) is a random variable.

§ Let An be a sequence of subsets of Ω. We definen

lim
n→∞

An = ∩n ∪m≥n Am, lim
n→∞

An = ∪n ∩m≥n Am,

and notice that (limn→∞ An)c = limn→∞Ac
n. We say that limn→∞An = A (we also write An → A)

if, by definition, limn→∞ An = limn→∞An = A, and write this also as An → A. For example, if An

is an increasing sequence of sets then (show this!) limn→∞ An = ∪nAn and if An is decreasing then
limn→∞An = ∩nAn. Also notice that ω ∈ limAn if and only if ω belongs to An for infinitely many
indices n, while ω ∈ limAn if and only if ω belongs to An for all except finitely many n.

nNotice the complete analogy with numerical sequences: limn→infty xn = infn supk≥n xk, limn→infty xn =

supn infk≥n xk; and xn → x, as n → ∞, if and only if lim xn = lim xn = x; the limit x could be ±∞.
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§ If S is a λ-system and A ⊂ Ω then

SA := {B ∈ 2Ω : BA ∈ S }

is also a λ-system. Indeed, if B1 ⊂ B2 both belong to SA then B1A,B2A belong to S and (B2−B1)A =
B2A − B1A ∈ S , because S is closed under proper differences; so B2 − B1 ∈ SA. Also, if Bn ∈ SA,
Bn ⊂ Bn+1 for all n, then BnA ∈ S for all n, and so A∪n Bn = ∪nABn ∈ S because S is closed under
increasing limits; so supnBn ∈ SA.

§ π & λ & Ω ≡ σ. In other words, if S is both π and λ and contains Ω then it is a σ-field. Indeed,
if A ∈ S then Ac = Ω −A ∈ S because S is λ. So S is closed under complementations, intersections
and limits. So it is a σ-field.

§[Sierpiński-Dynkin Lemma] Let S be a π-system containing Ω. Then λ(S ) = σ(S ).

Proof Since λ(S ) is the smallest λ-system containing S and since σ(S ) is a λ-system, we have λ(S ) ⊂
σ(S ). We need to show that σ(S ) ⊂ λ(S ). If we show that λ(S ) is also a π-system then it will be a
σ-field and we’ll be done. We know that

A ∈ S , B ∈ S ⇒ AB ∈ S ⊂ λ(S ). (3.12)

Hence
∀A ∈ S S ⊂ {B ∈ 2Ω : AB ∈ λ(S )} =: λ(S )A.

But λ(S )A is λ and so
∀A ∈ S λ(S ) ⊂ λ(S )A.

Let’s read this again:
A ∈ S , B ∈ λ(S ) ⇒ AB ∈ λ(S ). (3.13)

Wonder of wonders: (3.12) implied the seemingly stronger (3.13). Let’s rewrite the (3.13) as:

∀B ∈ λ(S ) S ⊂ {A ∈ 2Ω : AB ∈ λ(S )} =: λ(S )B .

But λ(S )B is λ and so
∀B ∈ λ(S ) λ(S ) ⊂ λ(S )B .

Let’s read this again:
B ∈ λ(S ), A ∈ λ(S ) ⇒ AB ∈ λ(S ). (3.14)

Wonder of wonders of wonders: (3.13) implied the seemingly stronger (3.14) which is what we need.

3.19 APPENDIX B: Sets and numbers

In some sense, probability is all about assigning numbers to sets.

§ Let Ω be a set and C a field of subsets of it. The function P0 : C → [0, 1] is additive if P0(A ∪B) =
P0(A) + P0(B) whenever AB = ∅. It is countably additive if for any A ∈ C for which there exist
mutually disjoint An ∈ C with A = ∪nAn we have P0(A) =

∑
n P0(An). We will throughout assume

that P0(Ω) = 1. (If, in addition to the above, we have that C is a σ-field, then P0 is a probability.)

§ If P is a probability on (Ω,F ), then (Ω,F ,P) is called probability space. If An is a sequence of sets in
F then P(∪nAn) ≤∑n P(An) [Boole’s inequality]. If An → A as n→ ∞ then P(An) → P(A) as n→ ∞
[continuity]. If

∑
n P(An) <∞ then P(limAn) = 0. [Borel-Cantelli lemma]. (Proof: ∪k≥mAk → limAn,

as m→ ∞; So P(limnAn) = limk≥m P(∪k≥mAk). But the latter is ≤∑k≥m P(Ak) which tends to 0, as
m→ ∞, by the assumption.)
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Lemma [CA] The following are equivalent:
(i) P0 is countably additive on the field C .
(ii) P0(An) → 0 for all decreasing sequences An ∈ C with ∩nAn = ∅.
(iii) P0(An) → 0 for all sequences An ∈ C with An → ∅.

Proof Suppose (i) holds. Let An decrease to ∅. We have

P0(A1) =

∞∑

k=1

P0(Ak −Ak+1)

= lim
n→∞

n−1∑

k=1

[P0(Ak) −P0(Ak+1)]

= lim
n→∞

[P0(A1) −P0(An)],

i.e. P0(An) → 0. We proved (i) ⇒ (ii). Next, suppose (ii) holds. Let An be mutually disjoint elements
of C with ∪nAn ∈ C . By finite additivity,

P0(∪kAk) =

n∑

k=1

P0(Ak) + P0(∪k>nAk).

Since ∪k>nAk decreases to ∅ we have P0(∪k>nAk) → 0, and so we obtain countable additivity. We
proved (ii) ⇒ (i). Suppose (ii) holds. Let An ∈ C , An → ∅. We want to show that P0(An) → 0. The
problem is that An is not decreasing so we need, somehow, to construct auxiliary decreasing sequence of
sets. What does An → 0 mean? It means that

Gn := ∪k≥nAk ↓ ∅.

If we knew that Gn ∈ C we would immediately get the result. The problem is we don’t know that, so
we can’t use Gn as an argument of the function P0. We need to work harder. We only know that finite
unions belong to C . So let us approximate Gn. We have

Gn,r := ∪r
k=nAk ↑ Gn, as r → ∞.

We also know that Gn,r ∈ C for all n, r. So we can talk about P0(Gn,r), a numerical sequence which
increases with r (and bounded below 1), having a limit, say

γn = lim
r→∞

P0(Gn,r).

This means that, FOR EACH n, P0(Gn,r) differs from γn by anything we like, when r is large. Let εn

be this “anything we like” thing. We just said that

FOR ALL n, γn −P0(Gn,r) ≤ εn, for all r larger than or equal to some r(n).

In particular,
FOR ALL n, γn −P0(Gn,r(n)) ≤ εn.

And if we let
R(n) := max(r(1), r(2), . . . , r(n)),

we have
FOR ALL n, γn −P0(Gn,R(n)) ≤ εn,

because r(n) ≤ R(n) and so P0(Gn,R(n)) ≤ P0(Gn,r(n)). Moreover, the sequence R(n) is increasing. We
have

An ⊂ Gn,R(n) ⊂ Gn ↓ ∅,

so, while we have created a sequence Gn,R(n) of sets in C which is above An, and does converge to ∅, we
do not know that Gn,R(n) decreases, so we cannot apply our assumption (ii). Therefore we need to work
harder. We take

Hn = ∩n
k=1Gk,R(k).
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Clearly, Hn ∈ C , and Hn decreases, and Hn ↓ ∅, therefore, by (ii),

P0(Hn) → 0.

But how does Hn compare to An? We lost track of it, so let’s see:

P0(An \Hn) = P0

(
∪n

k=1

(
An \Gk,R(k)

))

≤
n∑

k=1

P0

(
An \Gk,R(k)

)

≤
n∑

k=1

P0

(
Gn,R(n) −Gk,R(k)

)
=

n∑

k=1

(
P0(Gn,R(n)) −P0(Gk,R(k))

)

≤
n∑

k=1

(
P0(Gk,R(n)) −P0(Gk,R(k))

)

≤
n∑

k=1

(
vk −P0(Gk,R(k))

)
≤

n∑

k=1

εk,

where, recall, εk is ANYTHING WE PLEASE. We would be pleased to show that P0(An \Hn) → 0, for
this would imply P0(An) → 0. Let us then CHOOSE

εk = η2−k,

where η > 0 is arbitrary. Hence
∑n

k=1 εk ≤ η. Hence P0(An \ Hn) ≤ η, and so we can conclude. We
proved that (ii) ⇒ (iii). Since, obviously, (iii) ⇒ (ii), the lemma has been proved.

Lemma [COMMON LIMITS] Suppose that P0 is countably additive on the field C .
(i) If An is a sequence in C that has a limit (but which is not necessarily in C , then P0(An) has a limit.
(ii) If An, Bn are sequences in C with the same limit (not necessarily in C ) then P0(An), P0(Bn) have
the same limit.

Proof Recall that a sequence xn of real numbers converges if and only if, given ε > 0, there is an integer
N such that supm>n |xn − xm| ≤ ε if n > N . The negation of the latter statement implies the existence
of ε > 0 such that, for all N there is n > N and m > N with |xn − xm| > ε; or, if we let m = I(n), we
have that |xn −xI(n)| 6→ 0, as n→ ∞. Therefore, if we can prove that for all strictly increasing sequence
of integers I(n) we have

xn − xI(n) → 0, as n→ ∞,

we can deduce that xn has a limit. Let I(n) be such a sequence. Then

|P0(An) −P0(AI(n)| ≤ |P0(An4AI(n)|.

But An has a limit. Therefore An4AI(n) → ∅. By the Lemma above, P0(AI(n) → 0, and so (i) Is
proved. To prove (ii), we use the same reasoning but with BI(n) instead of AI(n).

Lemma [FIRST EXTENSION] Suppose that P0 is countably additive on the field C . Let D(C )
be the class of subsets of Ω that are limits of sets in C . Define P1 on D(C ) by

P1(lim
n
An) = lim

n
P0(An), An ∈ C .

Then
(i) D(C ) is a field.
(ii) The definition P1 is valid.
(iii) P1 is countably additive on D(C ).

Proof (i) Easy.
(ii) Follows from Lemma [COMMON LIMITS].
(iii) From Lemma [CA], it suffices to show that if An is a sequence of elements of D(C ) such that An ↓ ∅

then P1(An) → 0. Since Am ∈ D(C ) we can write

Am = lim
n
Bm,n.
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Then we also have
Am = lim

n
(B1,n ∩ · · · ∩ Bm,n).

Choose a sequence of integers nm increasing to ∞ such that

lim
m

[P1(Am) −P0(B1,nm
∩ · · · ∩ Bm,nm

)] = 0.

Since
lim
m

(B1,nm
∩ · · · ∩ Bm,nm

) = ∅,

we have
lim
m

P0(B1,nm
∩ · · · ∩ Bm,nm

) = 0,

and so
lim
m

P1(Am) = 0.

Lemma [SECOND EXTENSION] Suppose that P0 is countably additive on the field C . Let D(C )
be the class of subsets of Ω that are limits of sets in C . Let D2(C ) be the class of subsets of Ω that are
limits of sets in D(C ). Define P2 on D2(C ) by

P2(lim
n
An) = lim

n
P1(An), An ∈ D(C ).

Then (i) D2(C ) is a field.
(ii) The definition P2 is valid.
(iii) P2 is countably additive on D2(C ).

Proof Repetition of the proof of Lemma [FIRST EXTENSION].

Proposition [SANDWICH] Let F be the σ-field generated by C . Then, for any B ∈ F , there are
A,C ∈ D2(C ) such that P2(A) = P2(C).

Proof Let D↓(C ) (respectively, D↑(C )) be the class of sets which are limits of decreasing (respectively,
increasing) sequences of sets of C . Define the class D of subsets of Ω for which, given ε > 0, there is
G ∈ D↓(C ) and H ∈ D↑(C ) such that

G ⊂ A ⊂ H, P1(H) −P1(G) < ε.

We have C ⊂ D . Also, Ω ∈ D . So if we show that D is both π and λ, then it is σ and so σ(C ) ⊂ D and
we are done. That it is closed under intersections and proper differences is easy. That it is closed under
increasing limits is left as an exercise.
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4.1 Introduction

Most of this chapter is concerned with a random variable (X,Y ) with values in R2, but the
concepts/results are easily generalisable to random variables with values in Rd.

We first explain why the joint distribution function defines the law of (X,Y ). We talk
about independence and carefully explain why independence between classes of sets closed under
intersection implies independence between their σ-fields.

To define conditional density we define projection and prove everything, except the existence
of a regular conditional distribution.

Finally, we talk about a Gaussian variable in Rd.

4.2 Joint distributions

Consider a random variable (X,Y ) : (Ω,F ) → (R2,B(R2)). This random variable is called
TWO RANDOM VARIABLES.

4–1
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If P is a probability of (Ω,F ), the joint distribution of (X,Y ) is another name for
the law PX,Y of the random variable (X,Y ).

The joint distribution function of (X,Y ) is the function

FX,Y (x, y) := P(X ≤ x, Y ≤ y) = PX,Y ((−∞, x] × (−∞, y]), (x, y) ∈ R2. (4.1)

The law PX of X is referred to as the first marginal of the law PX,Y . The distribution function
FX of X is referred to as the first marginal distribution function of the joint distribution function
FX,Y and, of course,

FX(x) = lim
y→∞

FX,Y (x, y).

Note that we chose ti use ≤ instead of < in (4.1) for no good reason other than a mere arbitrary
convention.

4.2.1 Knowledge of FX,Y implies knowledge of PX,Y

We would like to explain why, knowledge of the function FX,Y implies knowledge of PX,Y (B) for
all B ∈ B(R2). Consider a rectangle (with sides parallel to the axes–please think geometrically)

(a1, b1] × (a2, b2] := {(x, y) ∈ R2 : a1 < x ≤ b1, a2 < y ≤ b2}. (4.2)

We allow a1, a2 to take any value, including −∞. Since (−∞, b1]×(−∞, b2] is the disjoint union
of four rectangles, using additivity, we obtain

PX,Y ((a1, b1] × (a2, b2]) = FX,Y (b1, b2) − FX,Y (b1, a2) − FX,Y (a1, b2) + FX,Y (b1, b2).

Rectangles of the form (4.2) have the following nice properties: First, intersection of two of them
is a rectangle of the same form. Thus, if R denotes the collection of these rectangles we have
that R is closed under finite intersection, i.e. it is a π-system. Second, the complement of a
rectangle from R is a finite union of disjoint rectangles from R.

EXERCISE 31. Write, explicitly, the complement of (a1, b1]× (a2, b2] as the disjoint union of
elements of R. Notice we can do that in at least two different ways. Do so.

Now consider the class

C := {finite disjoint unions of elements of R}.

It is easy to visualise, geometrically, what kind of elements C contains. Then

EXERCISE 32. Show that C is a field, i.e. if A ∈ C then Ac ∈ C and if A,B ∈ C then
A ∪B ∈ C .

Note that the notation used here mimics that of Section 3.7. Indeed, the classes R,C here
behave in the same way as the classes with the same names there.

Hence, if A ∈ C , we can write A = ∪mi=1Bi, where Bi are disjoint rectangles from R, and,
since for each such rectangle Bi we can use FX,Y to compute PX,Y (B), we have that

PX,Y (A) =
m∑

i=1

PX,Y (B), A ∈ C ,

can be computed by using FX,Y only.

But there are many sets in B(R2) that do not belong to C , so we wish to continue our
endeavour. If it were true that every set in B(R2) was a limit of sets of C then we would
be finished, by the continuity property of a probability. However, there are many elements in
B(R2) that are not limits of sets in C .
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Example 4.1. The set of all points (x, y) where x, y are rationals cannot be obtained as a limit
of elements of C 2. To illuminate this point, consider “straightforward” procedure that places a
little rectangle around each such point and then let the little rectangle shrink. Specifically, let
Q = {q1, q2, . . .} be an enumeration of the rationals. To each (qm, qn) associate the rectangle

Im,n(ε) := (qm − ε2−m, qm + ε2−m] × (qn − ε2−n, qn + ε2−n],

and let I(ε) := ∪m,nIm,n(ε). Show that ∩ε>0,ε∈QI(ε) is not equal to Q × Q.
Hint: The set I(ε) is uncountable.

We will denote by P0 the function PX,Y restricted to C . Clearly, P0 is uniquely specified
by FX,Y . If we show that P0 can be uniquely extended to a probability on (R2,B(R2)) then
our claim that FX,Y completely specifies PX,Y will be proved. The steps in showing this are
precisely the same as those of Section 3.7.
1. We first show that P0 is countably additive on C .
2. We then extend P0 to P1 on D(C ).
3. We then extend P1 to P2 on D2(C ).
4. Finally, we show, precisely as before, that, for every B ∈ B(R 2) there are sets A,C ∈ D2(C )
such that A ⊂ B ⊂ C and P2(A) = P2(C).

4.3 Independence

Recall (see 2.2 ) that X,Y are independent random variables on (Ω,FP) if σ(X), σ(Y ) are
independent σ-fields. We wish to show that

Proposition 4.1. X,Y are independent on (Ω,F ,P) if and only if FX,Y (x, y) := P(X ≤
x, Y ≤ Y ), FX(x) := P(X ≤ x), FY (y) := P(Y ≤ y) are related by

FX,Y (x, y) = FX(x)FY (y).

This is a consequence of the following:

Lemma 4.1. Let (Ω,F ,P) be a probability space. Let R1,R2 be two π-systems. Then σ(R1), σ(R2)
are independent if and only if

P(B1B2) = P(B1)P(B2), B1 ∈ R1, B2 ∈ R2.

Proof The proof mimics the uniqueness part of the proof of Theorem 3.1. Fix B1 ∈ R1

and consider two probabilities on σ(R2):

P(B1A2), P(B1)P(A2), A2 ∈ σ(R2).

Our assumption says that these two probabilities agree on R2. Since R2 is a π-system, the two
probabilities agree on σ(R2): For each B1 ∈ R1,

P(B1A2) = P(B1)P(A2), A2 ∈ σ(R2). (4.3)

Now, for fixed A2 ∈ σ(R2) consider two probabilities on σ(R1):

P(A1A2), P(A1)P(A2), A1 ∈ σ(R1).

(4.3) says that these two probabilities agree on R1. Since R1 is a π-system, the two probabilities
agree on σ(R1): For each A2 ∈ σ(R2),

P(A1A2) = P(A1)P(A2), A1 ∈ σ(R1),

which is what we need. �

Proof of Proposition 4.1: Let R1 = {X−1(a, b] : a < b}, R2 = {Y −1(a, b] : a < b}.
These are both π-systems. It is easy to see that the assumption FX,Y (x, y) = FX(x)FY (y)
implies that P(B1B2) = P(B1)P(B2), B1 ∈ R1, B2 ∈ R2. Hence P(A1A2) = P(A1)P(A2),
A1 ∈ σ(R1) = σ(X), A2 ∈ σ(R2) = σ(Y ).
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4.4 Joint density

Consider the coin flip space (Ω = {0, 1}N,F ,P). Define the random variables

U1 :=

∞∑

n=1

ω2n

2n
, U2 :=

∞∑

n=1

ω2n−1

2n
.

By applying Lemma 4.1 we can see that U1, U2 are independent.

Let h : (R2,B(R2)) → (R,B) be measurable and suppose h ≥ 0. Define the Lebesgue
integral ∫

R2

h(x, y)dxdy :=
∑

n1,n2∈Z

Eh(U1 + n1, U2 + n2),

and, more generally, for any B ∈ B(R2),
∫

B
h(x, y)dxdy :=

∫

R2

h(x, y)1B(x, y)dxdy.

If h has no restriction on sign, define
∫
B h(x, y)dxdy :=

∫
B h

+(x, y)dxdy −
∫
B h

−(x, y)dxdy,
provided not both terms are infinite. The following theorem connects what one learns in basic
Calculus of Many Variables with what we just defined.

Theorem 4.1. (i) If h is Riemann integrable on a rectangle R = [a, b]× [c, d] then its Lebesgue
integral on R coincides with its Riemann integral on R.
(ii) If h is bounded and measurable then it is Riemann integrable on R of the set of discontinuities
D of h satisfies P((U1, U2) ∈ D) = 0.

More generally, given two distribution functions F1, F2 on R, we can define the product
measure F1 × F2 on (R2,B(R2)) by defining it first on rectangles,

(F1 × F2)(B1 ×B2) := P(F−1
1 (U1) ∈ B1, F

−1
2 (U2) ∈ B2),

and then extending it to B(R2) using the procedure explained earlier. We can also define the
Lebesgue-Stieltjes integral

∫

R2

h d(F1 × F2) := Eh(F−1
1 (U1), F

−1
2 (U2)).

Theorem 4.2 (Fubini). If h ≥ 0 or if
∫

R2 |h| d(F1 × F2) <∞, then
∫

R2

h d(F1 × F2) =

∫

R

(∫

R

h(x, y)F2(dy)

)
F1(dx) =

∫

R

(∫

R

h(x, y)F1(dx)

)
F2(dy).

Proof [sketch]: The statement is obvious when h(x, y) = 1B1
(x)1B2

(y). Hence it is obvious
for linear combinations of such functions. The general statement follows from an approximation
procedure relying on an argument based on the Sierpiński-Dynkin lemma.

Occasionally, it so happens that there exists a function f such that FX,Y can be written as
a Lebesgue integral:

FX,Y (x, y) =

∫

(−∞,x]×(−∞,y]
f(s, t)dsdt.

In such a case, we say that (X,Y ) is absolutely continuous (jointly absolutely continuous, I
suppose, if you want to be pedantic) and that fX,Y is a density. Using Fubini’s theorem, we see
that

fX(x) =

∫

(−∞,x]
f(s)ds

is a density for X (i.e. X is absolutely continuous, and so is Y ).

Another consequence of Fubini’s theorem is:
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Lemma 4.2. If X,Y are independent then

E(XY ) = (EX)(EY ),

whenever the expectations are defined.

And another, useful consequence of Fubini’s theorem is:

Lemma 4.3. If X is a positive random variable then

EX =

∫ ∞

0
P(X > x) dx.

A standard criterion for independence between X,Y , for absolutely continuous (X,Y ), is:

Lemma 4.4. Suppose that (X,Y ) is absolutely continuous. Let fX,Y be a density of (X,Y ).
Let fX , fY be densities of X,Y , respectively. Then X,Y are independent if and only if

f(x, y) = fX(x)fY (y),

for all (x, y) except, possibly, on a set of measure zero.

4.5 Joint moment generating function

When (X,Y ) is a random variable in R2 we can define its moment generating function by

MX,Y (η, θ) := EeηX+θY , η, θ ∈ R.

whenever it exists. Let also MX ,MY be the moment generating functions of X,Y . One can
prove that:

Lemma 4.5. Suppose that MX,Y exists in a (one sided) neighbourhood of zero. If MX,Y (η, θ) =
MX(η)MY (θ) then X,Y are independent.

4.6 Correlations

We now consider random variables X on some probability space (Ω,F ,P) with EX 2 <∞. The
aggregate of all these random variables will be denoted by

L2(Ω,F ,P).

If EX2 <∞, EY 2 <∞, then E(X + Y )2 <∞ (indeed, (x+ y)2 ≤ 2x2 + 2y2). This means that
if X,Y ∈ L2(Ω,F ,P) then, for any a, b ∈ R, aX + bY ∈ L2(Ω,F ,P). Hence L2(Ω,F ,P) is a
linear space (a linear subspace of RΩ). Recall that the covariance between X and Y is defined
by

cov(X,Y ) = E(X −EX)(Y −EY ).

Since, for X1, X2, Y ∈ L2(Ω,F ,P), a1, a2 ∈ R,

cov(a1X1 + a2X2, Y ) = a1 cov(X1, Y ) + a2 cov(X2, Y ),

the covariance is linear in each of its arguments when the other is kept fixed and it can thus be
used to define an inner product:

〈X,Y 〉 := cov(X,Y ).

We also define the semi-norm

||X|| :=
√

cov(X,X) =
√

var(X,X),

where the word ‘semi-norm’ means that it has the following properties:
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1. ||X|| ≥ 0

2. ||a1X1 + a2X2|| = |a1| ||X1|| + |a2| ||X2||.

3. ||X + Y || ≤ ||X|| + ||Y ||.

Another name for ||X|| is ‘standard deviation’. We also note that

If ||X|| = 0 then P(X = 0) = 1.

We cannot deduce, from ||X|| = 0 alone that X(ω) = 0 for all ω ∈ Ω, but only that X(ω) = 0
for all ω except those in a set of probability zero. If we could deduce that X(ω) = 0 for all
ω ∈ Ω, we would say that || · || is a norm. To get around this problem, we merely identify all
random variables in L2(Ω,F ,P) which differ on a set of measure zero: That is, we let [X] be
the set of all Y such that P(X 6= Y ) = 0, and redefine L2(Ω,F ,P) to be the collection of all
such [X]. It is not hard to see that this is still a linear space and if we let ||[X]|| := ||X|| (which
is well defined), then this is a norm.

Being a normed space with an inner product, L2(Ω,F ,P) has a structure much like the
geometric structure of the usual Euclidean space, for instance, Pythagoras’ theorem holds:

||X + Y ||2 = ||X||2 + ||Y ||2 if 〈X,Y 〉 = 0.

The notion of convergence in L2(Ω,F ,P) is as follows: We say that Xn → X if ||Xn−X|| → 0,
as n→ ∞. With respect to this notion of convergence, the space L2(Ω,F ,P) is complete:

Lemma 4.6. If Xn is a sequence in L2(Ω,F ,P) such that

sup
m,n≥N

||Xn −Xm|| → 0 as N → ∞,

then there is X ∈ L2(Ω,F ,P) such that

||Xm −X|| → 0 as m→ ∞.

Proof The assumption means that, given any ε > 0, we can find and index N(ε) such
that ||Xn − Xm|| ≤ ε for all n,m ≥ N(ε). Since we can do this for any ε, we can do it for
ε = 2−1, 2−2, 2−3, . . .. Thus, if ε = 2−`, there is an index N` such that

||Xn −Xm|| ≤ 2−` for all n,m ≥ N`. (4.4)

Define M` = max(N1, N2, . . . , N`). Then ||XM`+1
−XM`

|| ≤ 2−`. But then

E|XM`+1
−XM`

| ≤ ||XM`+1
−XM`

|| ≤ 2−`.

Hence ∞∑

`=1

E|XM`+1
−XM`

| ≤ 1,

and, by Fubini’s theorem,

E

∞∑

`=1

|XM`+1
−XM`

| <∞.

Therefore, the random variable sum∞
`=1|XM`+1

−XM`
| is finite with probability 1. Put it other-

wise, there is a set A ∈ F , with P(A) = 0, such that

∞∑

`=1

|XM`+1
(ω) −XM`

(ω)| <∞, ω ∈ Ac.
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This means that

lim
n→∞

n−1∑

`=1

(XM`+1
(ω) −XM`

(ω)) exists for all ω ∈ Ac.

But the sum is just XMn(ω) −XM1
(ω). We have thus proved that for all ω ∈ Ac there is X(ω)

such that XMn(ω) → X(ω) as n→ ∞. Since this is a limit, the function X is a random variable.
Fix ` and use (4.4) again with m ≥M`, n = Mr, for r ≥ `:

E|Xm −XMr |2 ≤ 4−`, m ≥M`, r ≥ `.

By Fatou’s lemma, for all m ≥M`,

E|Xm −X|2 = E lim
r→∞

|Xm −XMr |2 ≤ lim
r→∞

E|Xm −XMr |2 ≤ 2−`.

Since ||Xm − X|| ≥ ||X|| − ||Xm||, we have ||X|| ≤ ||Xm|| + 2` < ∞, hence X ∈ L2(Ω,F ,P).
Also, limm→∞ ||Xm −X|| = 0, as required. �

4.7 Conditioning

4.7.1 Näıve conditioning

Näıve conditioning was defined in 2.1 . Namely, if (Ω,F ,P) is a probability space and B ∈ F ,
P(B) 6= 0, we let

P(A|B) = P(AB)/P(B), A ∈ F ,

be a new probability, called P conditional on B. We easily see that (Ω,F ,P(·|B)) is a new
probability space.

The problem is that, in many cases, we want to condition with respect to an event B that has
probability zero. This can be done. Loosely speaking, what saves us is the fact that if P(B) = 0
then P(AB) = 0 as well.

We can use many methods for defining conditioning in a more general sense. We adopt a
geometric approach. In Chapter 8 you will see another approach.

4.7.2 Geometry

Consider the Euclidean space Rd. Let G be a linear subspace of it. Let ||x − y|| stand for the
Euclidean distance between x, y ∈ Rd, i.e.

||x− y|| :=
√

(x1 − y1)2 + · · · + (xd − yd)2,

and
〈x, y〉 := x1y1 + · · · + xdyd.

Thus 〈x, y〉/||x|| ||y|| is the cosine of the angle between x and y. We wish to project an x ∈ Rd

onto G:

Lemma 4.7. Given any x ∈ Rd there is a unique x̂ ∈ G such that

||x− x̂|| = min
y∈G

||x− y||.

If we think geometrically, the answer is obvious: this x̂ is such that x− x̂ is orthogonal to G;
in other words, the angle between x− x̂ and any y ∈ G is a right angle, i.e. its cosine is zero:

〈x− x̂, y〉 = 0, y ∈ G.
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G

y

x

0

x

Equivalently,
〈x̂, y〉 = 〈x, y〉, y ∈ G. (4.5)

Since G is a linear space, (4.5) defines x̂ uniquely. To see this directly, assume that there are
two elements x̂, x̂′ ∈ G satisfying (4.5). Then 〈x̂, y〉 = 〈x̂′, y〉 for all y ∈ G. Thus, 〈x̂− x̂′, y〉 = 0,
for all y ∈ G. In particular, for y = x̂− x̂′, we have 〈x̂− x̂′, x̂− x̂′〉 = 0, which immediately gives
x̂ = x̂′.

Proof of Lemma 4.7: Define (uniquely) x̂ ∈ G by (4.5). Obviously,

||x̂− y||2 = 〈x̂− y, x̂− y〉 ≥ 0, y ∈ G.

We have

0 ≤ 〈x̂− y, x̂− y〉 = ||x̂||2 + ||y||2 − 2〈x̂, y〉
= ||x̂||2 + ||y||2 − 〈x, y〉 − 〈x̂, y〉, y ∈ G,

where we used (4.5). We now use two things. First,

||x− y||2 = ||x||2 + ||y||2 + 2〈x, y〉,

and second,

||x||2 = ||(x− x̂) + x̂||2 = ||x− x̂||2 + ||x̂||2 + 2〈x− x̂, x〉 = ||x− x̂||2 + ||x̂||2,

because 〈x− x̂, x〉 = 0, by (4.5). Combining the last two displays our inequality becomes

0 ≤ ||x− y||2 − ||x− x̂||2, y ∈ G,

which is what we want.

Notation: We will write
x̂ = proj(x|G),

to remind ourselves that x̂ is obtained by projecting x onto G .

EXERCISE 33. Let H be a linear subspace of G. Then

proj
(
proj(x | G) | H

)
= proj(x | H).

(This should be geometrically ‘obvious’: it is an exercise in right angles.)
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4.7.3 Conditional probability

Suppose now that G ⊂ F is a σ-field. Then L2(Ω,G ,P) is a linear subspace of L2(Ω,F ,P).
By analogy to the geometric picture above, given X ∈ L2(Ω,F ,P), we wish to define X̂ ∈
L2(Ω,G ,P) such that

||X − X̂|| = min
Y ∈L2(Ω,G ,P)

||X − Y ||.

Owing to the structure of L2(Ω,G ,P), this can be done:

Theorem 4.3. Let G ⊂ F be a σ-field. Given X ∈ L2(Ω,F ,P), there exists X̂ ∈ L2(Ω,G ,P)
such that one of the following two equivalent statements holds:

(i)
||X − X̂ || = inf

Y ∈L2(Ω,G ,P)
||X − Y ||. (4.6)

(ii)
EXY = EX̂Y, for all Y ∈ L2(Ω,G ,P). (4.7)

Furthermore, X̂ is almost surely unique, in the sense that if X̂ ′ ∈ L2(Ω,G ,P) satisfies (i) or
(ii) then P(X̂ = X̂ ′) = 1.

Proof [sketch]: We only need to prove existence of such an X̂. The rest of the proof is as in
the previous section. Existence is guaranteed by Lemma 4.4. Indeed, by the definition of inf,
we can choose Yn ∈ L2(Ω,G ,P) such that ||X − Yn|| converges to the infimum in (4.6). It is
easy to see that supm,n≥N ||Yn − Ym|| → 0 as N → ∞, therefore, by Lemma 4.4, we have an

X̂ ∈ L2(Ω,G ,P) such that ||Yn − X̂|| → 0 as n→ ∞. This X̂ does the job.

We use the following notation:
X̂ = EP(X|G ).

The notation reminds us that X̂ depends both on G and on P. If P is implicitly understood
then we just write X̂ = E(X|G ).

The next exercise justifies using the symbol E for this projection. Indeed, if the σ-field G is
the smallest possible, then the projection is a constant, the expectation of X:

EXERCISE 34. Show that E(X|{∅,Ω}) = EX. (Hint: E(X − t)2 is minimised by t = EX.)

What happens if X is G measurable?

EXERCISE 35. If X ∈ L2(Ω,G ,P) then E(X|G ) = X.

We can also show the double projection property:

EXERCISE 36. If H ⊂ G ⊂ F are all σ-fields then

E(E(X | G ) | H ) = E(X | H ).

Suppose now that A ∈ F . Then we define

P(A | G ) := E(1A | G ),

and call this conditional probability of the event A given the σ-field G . By definition, for each
A ∈ F , the conditional probability P(A | G ) is a random variable, specifically it is G -measurable.
Also, by linearity, if A1A2 = ∅,

P(A1 ∪A2|G ) = P(A1 | G ) + P(A2 | G ),

except on a set of probability zero. The question is: Is F 3 A 7→ P(A | G ) a probability for
almost every ω ∈ Ω? The answer is not obvious because P(A | G ) is defined uniquely up to an
event NA of probability zero. Since there are uncountably many A’s in F , it is not clear we can
simultaneously define all the random variables P(A | G ) up to an event of probability zero. In
special cases this can be done.
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4.7.4 Conditional law

Here is one such special case: Let X,Y be random variables on (Ω,F ,P) with finite second
moments. We define

P(X ∈ B | Y ) := P(X−1(B) | σ(Y )), B ∈ B.

While we can certainly do this rigorously for each fixed B ∈ B, it is not immediate that for
each ω ∈ Ω, this is a probability in B. It can be shown that it actually is, in the sense that we
can choose P(X ∈ B | Y ) so that it is a probability as a function of B and simultaneously a
measurable function of Y . We call this object conditional law of X given Y .

The conditional distribution function of X given Y is defined as

P(X ≤ x | Y ).

To be honest with the definitions, we must make sure they reduce to the usual näıve ones from
elementary probability. We consider two cases.

Case 1: (X,Y ) is absolutely continuous

Lemma 4.8. Suppose that (X,Y ) is absolutely continuous with joint density f(x, y). Let f2(y) =∫
R
f(x, y)dx be the density of Y . Define the conditional density of X given Y by

fX|Y (x|y) :=





f(x, y)

f2(y)
, if f2(y) 6= 0,

0, otherwise.

For B ∈ B, let

gB(y) :=

∫

B
fX|Y (x|y)dx.

Then
P (X ∈ B|Y ) = gB(Y ),

for all ω except on a set of probability zero.

Proof We need to show that (see (4.7))

E1(X ∈ B)W = EgB(Y )W,

for all W ∈ L2(Ω, σ(Y ),P). It is enough to show this for al, W of the form W = 1(Y ∈ C),
C ∈ B:

E1(X ∈ B)1(Y ∈ C) = EgB(Y )1(Y ∈ C).

But the left hand side equals ∫

R2

1B(x)1C(y)fX,Y dxdy.

The right hand side equals ∫

R
gB(y)1C(y)dy.

These two quantities are the same, by Fubini’s theorem. �
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Case 2: (X,Y ) is discrete

Suppose that (X,Y ) takes values in a discrete set S1 ×S2. As usual, define its probability mass
function and marginal mass functions by

p(x, y) := P((X,Y ) = (x, y)), p1(x) := P(X = x), p2(y) := P(Y = y), (x, y) ∈ S1 × S2.

We then have a simple formula for the conditional law of X given Y , precisely the one we expect:

Lemma 4.9. Let (X,Y ) be a random variable on (Ω,F ,P) with values in the discrete set
(S1 × S2, 2

S1×S2). Define the conditional probability mass function of X given Y by

pX|Y (x|y) :=





p(x, y)

p2(y)
, if p2(y) 6= 0,

0, otherwise.

Let P(X = x|Y ) be defined as the projection of 1(X = x) onto L2(Ω, σ(Y ),P). Thena

P(X = x|Y ) = pX|Y (x|Y ).

Proof We need to verify that pX|Y (x|Y ) satisfies (4.7), namely,

E1(X = x)W = EpX|Y (x|Y )W, W ∈ L2(Ω, σ(Y ),P).

We work with the case where S2 is a finite set, the more general case being similar. We can
then write Y as a finite sum of the form

Y =
∑

y

y1(Y = y)

where the Ak are mutually disjoint with P(Ak) > 0. Any W which is σ(Y )-measurable is a
function of Y , and so we can take

W =
∑

y

g(y)1(Y = y).

We have

E[pX|Y (x|Y )W ] =
∑

y

g(y)E[pX|Y (x|Y )1(Y = y)]

=
∑

y

g(y)E[pX|Y (x|y)1(Y = y)] =
∑

y

g(y)pX|Y (x|y)P(Y = y).

If P(Y = y) = 0 then pX|Y (x|y) = 0. Otherwise, pX|Y (x|y) = p(x, y)/p2(y), and so

E[pX|Y (x|Y )W ] =
∑

y

g(y)p(x, y) = EXW,

as required. �

aThe notation pX|Y is terrible. We only use it out of some respect to the undergraduate probability courses.
The reason that the notation is terrible is that in the subsript ‘X|Y ’ in pX|Y (x|Y ) plays a merely cosmetic rôle,
as opposed to the essential rôle played by the last variable Y inside the parenthesis.
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4.8 Gaussian variables

4.8.1 The Gaussian law

The motivation of the Gaussian probability comes from the central limit theorem (which, long
time ago, was known as the “law of errors”). This was stated, without proof, in 2.3.2 . We
work heuristically in order to motivate the definitions. Let Sn = ξ1 + · · · + ξn be the sum of n
independent indicator (also known as Bernoulli) random variables ξi with P(ξi = 1) = p for all
i. Let Ŝn = Sn − ESn. Then, as n → ∞, the distribution function of Ŝn/

√
n converges to an

absolutely continuous distribution function with a famous formula. Let X be a random variable
with such a distribution function. Note that

Ŝ2n√
n

=
1√
2

Ŝn√
n

+
1√
2

Ŝ′
n√
n
,

where Ŝ′
n = ξn+1 + · · · + ξ2n is a random variable with the same law as Ŝn. So the distribution

of
bS′

n√
n

will also converge to the distribution of X. Moreover, Ŝ′
n, Ŝn are independent. Therefore,

if X1, X2 are independent random variables with the same law as X, then we expect that

X =
X1 +X2√

2
.

Even if we do not know what this famous distribution is, it should be such that this “addition
law” holds. From this, we can discover its density. One way to do that is by imposing the
extra assumption (which is not necessary) that the generating function of X exists for all θ:
M(θ) = EeθX . Then

M(θ) = M(θ/
√

2)2.

Letting θ =
√
η and taking logarithms, we have

logM(
√
η) = 2 logM(

√
η/2).

So, if we temporarily let m(η) = logM(
√

(η)) we have

m(η) = 2m(η/2).

So m(0) = 0 and with some work, we can actually find that the only continuous function
satisfying the latter is linear: m(η) = cη. (This should be geometrically obvious.) Hence

M(θ) = ecθ
2

.

From Lemma 3.32 we know that the moments of X are given by the derivatives of M at 0. We
find

M ′(0) = 0, M ′′(0) = 2c.

So EX = 0 (as it should), while EX2 = 2c. So c > 0. Since EX = 0, the second moment is the
variance and we customarily denote it by σ2. We arrive at

M(θ) = e
1

2
σ2θ2 .

We know that there is only one probability distribution with a given moment generating function.
Instead of trying to figure out which one it is, let us reveal the result and then just verify that it
is correct. We claim that the probability distribution corresponding to the last M is absolutely
continuous with density

f(x) = Ce−x
2/2σ2

.

Here, C is such that
∫

R
f(x)dx = 1. This is the famous normal or Gaussian density with mean

0 and variance σ2. It is called standard if σ2 = 1.
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EXERCISE 37. Show that
∫∞
−∞ eθxf(x)dx = e

1

2
σ2θ2 . (Hint: Complete the square and use the

definition of C.)

Now, to find C is a very important thing. It is based on the following:

Lemma 4.10. ∫

R

e−x
2

dx =
√
π.

(Liouville said that a Mathematician is someone for whom this integral is obvious.)

EXERCISE 38. Use Fubini’s theorem to write
(∫

R
e−x

2

dx
)2

=
∫

R2 e
−x2−y2dxdy and do the

latter integral using polar coördinates.

Using this we find that

C =
1√

2πσ2
.

Therefore, the standard normal density is

ϕ(x) =
1√
2π
e−x

2/2.

We write N (0, 1) for the law of a random variable X with standard normal density. We write
N (µ, σ2) for the law of σX + µ.

EXERCISE 39. Show that a density for N (µ, σ2) is

1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
.

EXERCISE 40. Show that if Xi, i = 1, . . . , d are independent and Xi having law N (µi, σ
2
i )

then
∑d

i=1Xi has law N (
∑

i µi,
∑

i σ
2
i ). Therefore linear combinations of independent normal

variables are normal.

4.8.2 The multidimensional Gaussian random variable

We now pass on to defining a Gaussian (or normal) variable in Rd (i.e. a random vector).

We say that (X1, . . . , Xd) is Gaussian in Rd if, for all a1, . . . , ad ∈ R, the random
variable a1X1 + · · · + adXd is normal.

The next lemma shows what the moment generating function of a normal vector is:

Lemma 4.11. If (X1, . . . , Xd) is Gaussian vector with

µj = EXj , rjk = cov(Xj , Xk),

then

E exp

d∑

j=1

θjXj = exp





d∑

j=1

µjθj +
1

2

d∑

j=1

d∑

k=1

rjkθjθk



 .
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Proof By definition
∑d

j=1 θjXj should be normal, i.e. have a law N (µ, σ2), for some µ, σ2.
We have

µ = E

d∑

j=1

θjXj =

d∑

j=1

µjθj, σ2 = cov

d∑

j=1

θjXj =

d∑

j=1

d∑

k=1

θjθk cov(Xj , Xk).

�

Since the moment generating function of a Gaussian vector is the exponential of a quadratic
form, there is no better way to express it other than using Linear Algebra. To this end, we
think of the elements x of Rd as column vectors. We use x′ to denote transposition, i.e. the
corresponding row when x is a column. And, of course, (x′)′ = x. Consider the mean (column)
vector

µ = (µ1, . . . , µd)
′

and the symmetric covariance matrix
R = [rjk].

Write also X for the column with entries X1, . . . , Xd. We then have

Eeθ
′X = exp

{
θ′µ+

1

2
θ′Rθ

}
.

This uniquely defines the law of (X1, . . . , Xd). This law is denoted by N (µ,R), where µ is the
mean vector and R the covariance matrix.

Lemma 4.12. A Gaussian vector (X1, . . . , Xd) is absolutely continuous if and only if R is
invertible. In this case, its density is given by

f(x) =
1√

(2π)d det(R)
exp

(
−1

2
(x− µ)′R−1(x− µ)

)
.

Proof Assume µ = 0, to ease notation. Assume R is invertible. It is easily seen that

R = E(XX ′)

where XX ′ is a d × d matrix and E(XX ′) is the matrix formed by taking the expectations of
the entries of XX ′. This R has two important properties:
(i) it is symmetric (obviously);
(ii) it is positive semi-definite, i.e. the quadratic form

u′Ru =
∑

k

∑

`

Rk`uku` ≥ 0

for all values of the variables, positive or negative. The reason for the latter is that u ′Ru is the
expectation of a non-negative quantity:

u′Ru = u′EXX ′u = E(X ′u)′(X ′u) = E(X ′u)2 ≥ 0.

Standard linear algebra shows that R has exactly d (counting multiplicities) non-negative eigen-
values. (In fact, they are strictly positive, due to the invertibility of R which is tantamount to
det(R) 6= 0). Furthermore, the eigenvectors can be chosen to be orthonormal. Letting U be the
matrix whose columns are these d orthonormal eigenvectors and Λ the diagonal matrix with the
eigenvalues in its diagonal, we have

RU = UΛ,
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from the very definition of the eigenvectors. Now

U ′ = U−1,

hence
R = UΛU ′ = UΛ1/2Λ1/2U ′ = PP ′,

with
P = UΛ1/2.

The matrix P is non-singular and is called the square root of R. We now define new random
variables Z by

X = PZ .

The thing to observe is that the covariance matrix of Z is

cov(Z) = EZZ ′ = EP−1XX ′P ′−1 = P−1R′P ′−1 = P−1PP ′P ′−1 = I,

I being the identity matrix. Thus

Eeθ
′Z = eθ

′θ/2 =

d∏

j=1

eθ
2
j /2 =

d∏

j=1

EeθjZj ,

implying that the components of Z are independent standard normal. Hence the density g of Z
is product:

g(z) =
∏

j

1√
2π
e−z

2
j /2.

Now X = PZ, hence its density f is computed easily by

f(x) = g(P−1x)/|det(P )|,

which yields the desired formula. �

If R has determinant zero then it is possible to “reduce the dimension” of the random vector
X so that the density exists. In fact,

Lemma 4.13. The support of X is the range of its covariance matrix R.

Proof Suppose that R has rank r. Then it has d− r eigenvalues at zero, so that the matrix
Λ consists of a d − r size block of zeros and the remaining non-zero eigenvalues. Hence now
R = PP ′, where P is a d× r matrix with rank r. We try again to find Z so that

X = PZ,

where Z is an r-dimensional random vector with density. If we manage to do this we will finish,
since the range of P is the range of R. Observing that P ′P is an r × r non-singular matrix, we
pre-multiply by it to get P ′PZ = P ′X, hence Z = (P ′P )−1P ′X. So if we define Z this way, we
see that

EZZ ′ = (P ′P )−1P ′RP (P ′P )−1 = (P ′P )−1P ′PP ′P (P ′P )−1 = I,

i.e. Z is a collection of r independent standard normal variables. The formula for Z is the
formula that solves a full-rank over-estimated linear system. We usually write Z = P +X and
call P+ the pseudo-inverse of P . It remains to show that every linear function of X is a linear
function of Z. Let

F = λ′Xa ,G = λ′PZ
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with Z = P+X. Consider
F −G = λ′(X − PZ).

Then

E(F −G)2 = Eλ′(X − PZ)(X ′ − Z ′P ′)λ = Eλ′(XX ′ −XZ ′P ′ − PZX ′ + PZZ ′P ′)λ.

But
EZX ′ = (P ′P )−1P ′EXX ′ = (P ′P )−1P ′PP ′ = P ′.

So
E(F −G)2 = λ′(PP ′ − PP ′ − PP ′ + PP ′)λ = 0.

�

Terminology: If X has law N (0, R) with R having rank r then
∑

j X
2
j is called χ2 with r

degrees of freedom.

4.8.3 Conditional Gaussian law

If it appears that we’ve done a lot of Linear Algebra, then this is because it is so: Dealing with
Gaussian random variables (and processes!) is mostly dealing with Linear Algebra (or Linear
Analysis!).

Without proof, we mention the following:

Lemma 4.14. Let (X;Y1, . . . , Yd) be a Gaussian random variable in R1+d. Then the conditional
law P(X ∈ ·|Y1, . . . , Yd) is normal with mean E(X|Y1, . . . , Yd) and deterministic covariance
matrix. Moreover, E(X|Y1, . . . , Yd) is a linear function of Y1, . . . , Yd).

EXERCISE 41. Let X,Y be independent standard Gaussian variables. Based on the last part
of the lemma above, compute E(X + 2Y |3X − 4Y ). (Hint: Make sure that (4.7) is satisfied.)
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5.1 Outline

We discuss several special random variables, and simple relationships between their distributions.

5.2 Binomial, Poisson, and multinomial

Consider the coin tossing experiment, i.e. consider a sequence ξ1, ξ2, . . . of i.i.d. random variables
with

P(ξ1 = 1) = p, P(ξ1 = 0) = 1 − p.

The law of
Sn = ξ1 + · · · + ξn

is called Binomial with parameters n and p. From this we have

ESn = np, varSn = n var ξ1 = np(1 − p),

and, since ξn+1 + ξn+m is Binomial with parameters m and p, and independent of Sn, we have
that the sum of two independent Binomial random variables with the same p is again Binomial.
We also have

P(Sn = k) =

(
n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n,

and, from the Binomial theorem,

EeθSn = (peθ + 1 − p)n.

EXERCISE 42. Compute the moment generating function of n−1/2(Sn−ESn) and show that,
as n→ ∞, it converges to the moment generating function of a Gaussian random variable.

EXERCISE 43. Use Chernoff’s inequality to estimate P(Sn > n(p+ x)) for x > 0.

5–1
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By letting p vary with n and taking limits we obtain a different fundamental law, the Poisson
law. Specifically,

Lemma 5.1. If pn = λ
n + o(1/n), as n→ ∞, then

P(Sn = k) → λk

k!
e−λ,

for all k = 0, 1, 2, . . ..

Proof Use Stirling’s formula. �

This is the Poisson law with parameter λ. The Poisson law is fundamental when, roughly
speaking, we deal with independent rare events.

Let X be a Poisson random variable. Then We have

EeθX =
∞∑

k=0

(λeθ)k

k!
e−λ = eλ(eθ−1).

Differentiating a couple of times, we find

EX = λ, varX = λ.

Furthermore,

Lemma 5.2. If X1, X2, . . . are independent Poisson random variables with parameters λ1, λ2, . . .
such that

∑
λk <∞ then

∑
kXk is Poisson with parameter

∑
k λk.

Proof We prove this for a finite number n of random variables (which is enough by the
way we construct a probability on an infinite product). The moment generating function of
X1 + . . .+Xn is

n∏

k=1

eλk(eθ−1) = e(e
θ−1)

Pn
k=1 λk

and this is the moment generating function of a Poisson law with parameter
∑

k λk. �

Next we consider conditional probabilities:

Lemma 5.3. Suppose that X1, X2 are independent Poisson with parameters λ1, λ2. Then, con-
ditional on X1 +X2 = n, we have that X1 is Binomial with parameters n, λ1/(λ1 + λ2).

Proof Elementary conditioning: For 0 ≤ k ≤ n,

P(X1 = k|X1 +X2 = n) =
P(X1 = k,X2 = n− k)

P(X1 +X2 = n)

=

λk1
k!
e−λ1

λn−k2

(n− k)!
e−λ2

(λ1 + λ2)
n

n!
e−λ1−λ2

=

(
n

k

)(
λ1

λ1 + λ2

)k ( λ2

λ1 + λ2

)n−k
.

�

Generalising this, we have:
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Lemma 5.4. Suppose that X1, X2, . . . , Xd are independent Poisson with parameters λ1, λ2, . . . , λd,
respectively. Then, conditionally on

∑
kXk = n, the random vector (X1, . . . , Xd) has law given

by

P(X1 = n1, . . . , Xd = nd |
∑

k

Xk = n) =

(
n

n1, . . . , nd

)(
λ1

λ

)n1

· · ·
(
λd
λ

)nd

,

where (n1, . . . , nd) are nonnegative integers with sum equal to n, and λ =
∑

k λk, and where

(
n

n1, . . . , nd

)
=

n!

n1! · · · nd!

EXERCISE 44. Show this.

The symbol

(
n

n1, . . . , nd

)
is the multinomial coefficient since it appears in the algebraic

identity known as multinomial theorem:

(x1 + · · · + xd)
n =

∑(
n

n1, . . . , nd

)
xn1

1 · · · xnd

d .

The sum is taken over all nonnegative integers (n1, . . . , nd), with sum equal to n.

The random variable (X1, . . . , Xd) with values in Zd+ is said to have a multinomial distribution
with parameters d, n, p1, . . . , pd (where p1 + · · · + pd = 1, so one of them is superfluous) if

P(X1 = n1, . . . , Xd = nd) =

(
n

n1, . . . , nd

)
pn1

1 · · · pnd

d ,

where (n1, . . . , nd) are nonnegative integers with sum equal to n,

Of course, a multinomial distribution with parameters 2, n, p, 1− p is a binomial distribution
with parameters n, p.

5.3 Thinning

Suppose an urn contains n balls. There are d colours available. Let the colours be denoted by
c1, c2, . . . , cd. To each ball assign colour ci with probability pi, independently from ball to ball.
Let Sin be the number of balls that have colour ci, 1 ≤ i ≤ d. It is easy to see that (S1

n, . . . , S
d
n)

has a multinomial law:

P(S1
n = k1, . . . , S

d
n = kd) =

(
n

k1, . . . , kd

)
pk11 · · · pkd

d ,

where (k1, . . . , kd) are nonnegative integers summing up to n. Clearly,

S1
n + · · · Sdn = n,

so the random variable S1
n, . . . , S

d
n cannot be independent. The question is:

Suppose that the number of balls is itself a random variable, independent of every-
thing else. Is there a way to choose the law of this random variable so that the above
variables are independent?

To put the problem in precise mathematical terms, let ξ1, ξ2, . . . be i.i.d. random colours, i.e.
random variables taking values in {c1, . . . , cd} such that

P(ξ1 = ci) = pi, 1 ≤ i ≤ d.
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Let

Sin :=

n∑

k=1

1(ξk = ci).

(In physical terms, Sin denotes precisely what we talked about earlier using a more flowery
language.) Now, independent of the sequence ξ1, ξ2, . . ., let N be a random variable with values
in Z+. The problem is to find its law so that

S1
N , . . . , S

d
N are independent random variables. (?)

It turns out that this is a characterising property of the Poisson law. We will contend ourselves
by proving one direction:

Lemma 5.5. If N is Poisson then (?) holds. Moreover, if N has expectation λ, then S iN is also
Poisson with expectation λpi.

EXERCISE 45. Prove the last lemma.

5.4 Geometric

A random variable X with values in N is geometric if it has the memoryless property:

For each k ∈ N, the conditional distribution of X − k given {X > k} is the same as
the distribution of X:

P(X − k = n|X > k) = P(X = n).

Think of X as a random time, e.g. the day on which a certain volcano will erupt. The property
above says that if by day k the volcano has not erupted then the remaining time X − k has the
same law as X, no matter how large k is.

Lemma 5.6. If q = P(X > 1) then

P(X > k) = qk, k ∈ N

and
P(X = k) = pqk−1,

where p = 1 − q.

Proof By the property of X,

P(X > k + n|X > k) = P(X > n),

for all k, n, which means that

P(X > k + 1) = P(X > k)P(X > 1).

Iterating this, we find
P(X > k) = P(X > 1)k, k = 0, 1, . . . .

�

People refer to X as geometric with parameter p. The terminology is not standard because
other people refer to X − 1 (which also has the memoryless property but takes values in Z+) as
geometric with parameter q. A matter of taste, really.

It is easy to see that
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Lemma 5.7. If X is geometric in N with P(X = 1) = p then

EX = 1/p, varX = (1 − p)/p2, EeθX =
peθ

1 − (1 − p)eθ
.

EXERCISE 46. Do all that.

A concrete way to get a geometric random variable is by considering ξ1, ξ2, . . . to be i.i.d.
with

P(ξ1 = 1) = 1 −P(ξ1 = 0) = p

and by letting
X = inf{k ≥ 1 : ξk = 1}.

We have P(X <∞) = 1, so
X = min{k ≥ 1 : ξk = 1}

and
P(X > k) = P(ξ1 = · · · = ξk = 0) = (1 − p)k,

as required.

We have that

Lemma 5.8. If X1, X2, . . . , Xd are independent and geometric then X = min(X1, . . . , Xd) is
geometric.

Proof

P(X > k) = P(X1 > k, . . . ,Xd > k)

= P(X1 > k) · · ·P(Xd > k)

= qk1 · · · qkd = (q1 · · · qd)k.

�

EXERCISE 47. Let X,Y be independent and geometric. Show that

P(X − Y > n|X > Y ) = P(X > n),

for all n, and interpret the formula.

5.5 Uniform

We have already seen, in detail, how to construct a uniform random variable, from first principles.
Recall that U is uniform in the interval [0, 1] if P(U ≤ x) = x, 0 ≤ x ≤ 1. More generally,

X is uniform in [a, b] if, for all intervals I, the probability P(X ∈ I) is proportional
to the length of I.

Of course, if X is uniform in [a, b], then cX + d is uniform in the interval with endpoints ca+ d
and cb+ d.

Recall that if F is a distribution function and U is uniform in [0, 1] then F −1(U) is a random
variable with distribution function F .
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Lemma 5.9. Let p1, . . . , pd be positive numbers adding up to 1. Split the interval [0, 1] into
consecutive intervals I1, . . . , Id of lengths p1, . . . , pd, respectively. Let U1, . . . , Un be i.i.d. uniform
in [0, 1]. Let

Sin =
n∑

k=1

1(Uk ∈ Ii), 1 ≤ i ≤ d.

Then (S1
n, . . . , S

d
n) has a multinomial law. In particular, S in is Binomial with parameters n, pi.

EXERCISE 48. Show this last lemma.

EXERCISE 49. Let U1, . . . , Ud be i.i.d. uniform in [0, 1]. Compute the probability P(U1 <
U2 < · · · < Ud).

EXERCISE 50. Consider a stick of length 1 and break it into 3 pieces, by choosing the two
break points at random. Find the probability that the 3 smaller sticks can be joined to form a
triangle.

EXERCISE 51. Pick a random variable U1 uniform in [0, 1]. Let U2 be the midpoint of
the interval [0, U1] or of [U1, 1], with equal probability. Continue in the same manner and
define U3 to be the midpoint of [0, U2] or of [U2, 1], with equal probability. Show that the
x 7→ limn→∞ P(Un ≤ x) is continuous but not absolutely so.

5.6 Exponential

A random variable T with values in R+ is exponential if it has the memoryless property:

For all t, s > 0,
P(T − t > s|T > t) = P(T > s).

Lemma 5.10. If T is exponential then there is λ > 0 such that

P(T > t) = e−λt, t ≥ 0.

Proof Implicit in the definition is that P(T > t) > 0 for all t. Hence α := P(T > 1) ∈ (0, 1).
We have

P(T > t+ s) = P(T > t)P(T > s)

for all t, s. Using this and induction, we have that, for all n ∈ N,

P(T > nt) = P(T > t)n.

This gives that, for all m ∈ N,

P(T > 1 = m(1/m)) = P(T > 1/m)m

and so P(T > 1/m) = P(T > 1)1/m. Letting t = 1/m in the pre-last display, we have

P(T > n/m) = αn/m.

Now, for t > 0, let q1 > q2 > . . . be rational numbers with inf{q1, q2, . . .} = t. Then

P(T > t) = P(∪k{T > qk}) = sup
k

P(T > qk) = sup
k
αqk = αinfk qk = αt.

Since α < 1, we have λ := − log α > 0. �

We say that T is exponential with parameter (rate) λ.

It is easy to see that
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Lemma 5.11. If T is exponential with rate λ then T has density

f(t) = λe−λt, t ≥ 0.

Also,

EeθT =
λ

λ− θ
,

defined for all θ < λ, and
ET = 1/λ, varT = 1/λ2.

Proof Note that ∫ t

0
f(s)ds = 1 − e−λt,

showing that f is a density for T . The rest are trivial. �

Lemma 5.12. Let T1, T2, . . . , Td be independent exponential random variables with parameters
λ1, λ2, . . . , λd, respectively. Then min(T1, . . . , Td) is exponential with parameter λ1 + · · · + λd.

Proof
P(min(T1, . . . , Td) > t) = P(T1 > t) · · ·P(Td > t).

�

Whereas an exponential is the natural analogue of a geometric, in that they are both mem-
oryless, the former also enjoys the important scaling property:

If T is exponential with rate λ then, for any c > 0, cT is exponential with rate λ/c,

and this is obvious.

EXERCISE 52. Let T1, T2, . . . , Td be independent exponential random variables all with rate
1. Show that

law of max(T1, . . . , Td) = law of

(
T1 +

T2

2
+ · · · + Td

d

)
.

Another relation between geometric and exponential is the following: Let p be very small.
Let X be geometric with parameter p. Consider a scaling of X by p, i.e. the random variable
pX which takes values p, 2p, 3p, . . .. Then the law of pX converges to an exponential law with
rate 1:

Lemma 5.13 (Rényi). For X geometric with parameter p,

lim
p→0

P(pX > t) = e−t, t > 0.

Proof P(pX > t) = P(X > t/p), and, since X is an integer,

P(X > t/p) = P(X ≥ dt/pe) = (1 − p)dt/pe+1.

Since limn→∞(1 + n−1)n = e, we have that the last expression converges to e−t as p→ 0. �
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